Evaluation of Conservation Practices, with an Emphasis on Habitat Quality and Climate Change, in the Lower Wabash Watershed

Report submitted to Mr. Michael Sertle, Ducks Unlimited and the Lower Wabash Collaborative Partnership

Charlotte Bradley, Crystal Haulter, and Yu Song

Indiana University, School of Public and Environmental Affairs V600 Capstone in Public and Environmental Affairs Vicky Meretsky and Gwen White

2016 December, 16

Executive Summary

For the Fall 2016 capstone class in the School of Public and Environmental Affairs (SPEA) at Indiana University, the Lower Wabash collaborative requested that we gather and assess information for the development of a conservation plan for the Lower Wabash River Watershed. The Lower Wabash Watershed begins south of Terre Haute, Indiana and extends south along the Indiana-Illinois border. The land use in the watershed is predominately agricultural, and runoff from fertilized crop fields supplies excess nutrients to the river. These nutrient loads have negative effects on local and downstream water quality, wildlife, and ultimately the ecosystem. The Eastern Tallgrass Prairie & Big Rivers Landscape Conservation Cooperative (ETPBR LCC) is facilitating conservation planning of the floodplains and associated upland habitats within the Lower Wabash River to address the effects of excess nutrient loading.

Our project purposes were two-fold: first we wanted to evaluate the conservation practices chosen by the ETPBR LCC to determine which practices provide the greatest benefits to wildlife and habitats. Second, we wanted to determine how climate change could potentially shape the conservation plan. To determine the effects of climate change on the conservation plan, we evaluated the climate change effects on the ETPBR LCC conservation practices and developed a scenario plan to determine how the practices hold-up under different possible future scenarios.

The conservation practices chosen by the ETPBR LCC were adapted from the Mississippi River Basin conservation plan. Our first step was to narrow down these practices to those best suited to the Lower Wabash Watershed. Next we used evaluation criteria developed by the Natural Resources Conservation Service (NRCS) to evaluate the soil and water quality benefits of the conservation practices. The NRCS evaluation tool has limited wildlife, habitat, and climate change evaluation criteria, so we developed the following criteria: biodiversity, invasive species, indicator species, flood control, and climate change resilience. We then used these criteria to assess which practices provide the greatest habitat and climate change benefits.

We also compiled information on species and functional groups benefitting from each practice. This information can be used as a baseline to inform decisions when selecting conservation practices for different habitats according to which wildlife groups are benefitted. Focal habitat information was also compiled from the Lower Wabash LCD draft plan to integrate into species distributions.

Climate change creates an uncertain future for conservation plans. Scenario planning is a useful tool that helps managers anticipate and plan for different future situations. Scenario planning is accomplished by pairing two external drivers that will have a significant impact on future conditions, but are unpredictable; therefore, multiple scenarios must be considered. By determining how these scenarios will change the landscape and how they will affect landowners' decisions, we were able to determine which conservation practices will be most relevant and useful under each scenario. Our scenario plan consisted of increased flooding events and increased drought events on one axis, and increased crop prices and decreased crop prices on the other axis.

Results of our conservation practice evaluations suggested that buffer strips, cover crops, and wetland restoration and reforestation provide the greatest habitat and climate change benefits. Wetland restoration and reforestation, drainage water management, and cover crops were found to provide the highest levels of benefits across all criteria. Scenario planning results show that cover crops and drainage water management are beneficial under all 4 possible future scenarios, implying that they are the most versatile practices.

Based on our results, we recommend implementing cover crops and drainage water management on active farmlands, and wetland restoration and reforestation, and buffer strips on marginal lands or inactive farmland. Limitations of our evaluation include simplicity of the scoring system, unweighted scores, and variations within practices.

Table of Contents

Executive Summary	1
1. Introduction and Purpose	5
2. Conservation Practices	9
3. Evaluation of Conservation Practices1	0
3.1 Introduction1	0
3.2 Evaluation of Soil and Water Benefits1	0
3.3 Evaluation of Habitat, Wildlife, and Climate Change Benefits, and Landowner Costs1	2
3.4 Overall Evaluation of Conservation Practices1	6
3.5 Limitations of Evaluations1	6
3.6 Wildlife Resources1	7
3.6.1 Introduction1	7
3.6.2 Conservation Practice Benefits for Functional Groups1	7
3.6.3 Evaluation of Conservation Practices Wildlife Benefits for Focal Habitats2	21
3.6.4 Further Research Suggestion2	26
4. Climate Change in the Lower Wabash Watershed2	26
4.1 Introduction2	26
4.2 Climate Change Scenario Planning2	27
5. Final Recommendations3	30
Acknowledgments	30
References3	31
Appendices:	33
Appendix 1. Descriptions of Criteria3	33
Appendix 2. Descriptions of Conservation Practices	37
2.1 Buffer Strips	37
2.2 Wetland Restoration and Reforestation3	39
2.3 Cover Crops3	39
2.4 Drainage Water Management4	10
2.5 Two-Stage Ditches4	12
2.6 Upper Floodplain Hydrologic Restoration4	13
Appendix 3. Wildlife4	15
Appendix 3.1 Rare Species Distribution in Lower Wabash4	
Appendix 3.2 Species Traits and Corresponding Functional Groups7	′ 3

Appendix 3.3 Species and Corresponding Functional Groups for Focal Habitat	78
Appendix 4. Table of Land Use Data	81
Appendix 5. Other Available Data	81

1. Introduction and Purpose

Introduction

The Lower Wabash Watershed begins south of Terre Haute, Indiana and extends south along the Indiana-Illinois border (Figure 1.1.1). Because of extensive agriculture in the area, excess nutrients from fertilization make their way to the river, and are carried downstream, and eventually out to the Gulf of Mexico. The occurrence of excess nutrient loading has negative localized effects, as well as negative downstream effects. Local effects include threats to rare species and biodiversity. Downstream effects include a phenomenon, known as Gulf Hypoxia, which threatens wildlife and ecosystems by reducing oxygen to levels that do not support aquatic life in the Gulf of Mexico.

The Mississippi River Basin/Gulf Hypoxia Initiative (MRB/GHI) is a collaborative effort designed to create a framework to promote ecosystem services produced by strategically configured wildlife conservation practices in the Mississippi River Basin (Gulf Coastal Plains, 2016). This initiative is led by seven Landscape Conservation Cooperatives (LCCs), which are regional collaborations of state and federal agencies and nongovernmental organizations. This joint effort of multiple stakeholders is essential in executing large-scale, long-term conservation goals, such as the MRB/GHI. The Eastern Tallgrass Prairie & Big Rivers Landscape Conservation Cooperative (ETPBR LCC) is facilitating conservation planning of the floodplains and associated upland habitats within the Lower Wabash River watersheds as a step-down project within the GHI. Our V600 capstone class at Indiana University is working with the Lower Wabash collaborative to gather and compile information that will be useful for the stakeholders, for the development of a conservation plan for the area. The stakeholders involved in the Lower Wabash collaborative include the US Fish and Wildlife Service, The Nature Conservancy, Natural Resources Conservation Service (NRCS), Ducks Unlimited, Illinois and Indiana Divisions of Fish and Wildlife, and several other federal, state, and NGO partners.

Figure 1.1.1 The Wabash River Watershed, Indiana and Illinois. The Lower Wabash extends from the southern border of Indiana, up to Terre Haute. (from pinterest.com)

Hypoxia occurs when excess nutrients stimulate algal blooms so that the concentration of dissolved oxygen in the water column is depleted, and oxygen-dependent aquatic organisms can no longer survive. Hypoxia has major implications not only for wildlife, but also for the fishing industry and economies that depend on healthy aquatic communities. Runoff from agriculture and municipality outflows transfer excess nitrogen and phosphorus loads into local watersheds, which then flow to regional rivers and eventually the sea. Evidence suggests that the duration and frequency of hypoxic events in the U.S.is increasing. The Ohio River was identified as the greatest contributor of nitrogen and phosphorus to the Gulf of Mexico in the 2008 Gulf Hypoxia

Action Plan (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, 2008). Further, a 2005 study by the Ohio River Valley Sanitation Commission (ORSANCO) identified the Wabash River, the second largest tributary to the Ohio River, as the largest contributor of nitrogen and phosphorus to the Ohio River. A more recent 2011 study by ORSANCO found that the Wabash River produced an annual load of 138,976 metric tons of nitrogen and 4,646 metric tons of phosphorus, which represents 24.5% and 10.6%, respectively, of the nitrogen and phosphorus loads in the Ohio River (ORSANCO, 2012). For this reason, reducing nutrient loading (runoff) from Midwestern agriculture is a key component to addressing the hypoxia problem downstream.

Floodplains are comprised of "wet" soils, which in their natural state, provide habitat and food sources for a diversity of species and provide water quality improvement by filtering out pollutants. When drained, floodplains can be the most productive agricultural lands. Although most wetlands are privately owned, they are a public concern because of the role they play in improving water quality and as a habitat for wildlife. Riparian vegetation can trap sediments and remove harmful agricultural pollutants such as nitrate-nitrogen, phosphorus, and pesticides before they can enter streams and rivers (Figure 1.1.2). Because of the crucial ecosystem services provided by floodplains and vegetated riparian zones, it is important to maintain or restore them (Evans et al., 1996).

Figure 1.1.2 Riparian vegetation in floodplains can remove agricultural pollutants before they reach streams and rivers (Evans et al., 1996).

Purpose

Our V600 capstone class from the Indiana University School of Public and Environmental Affairs (IU SPEA) is assisting the Lower Wabash collaborative in conservation planning, under a changing climate. Decision makers should consider different potential future climates, to be able to adapt to unpredictable changing conditions, take advantage of opportunities, and mitigate negative impacts. We are also looking into ways to improve decision making, regarding habitat quality and wildlife conservation. Our findings can be applied to other similar areas in LCC to ensure sustainable conservation strategies are implemented on a large scale in light of climate change and other drivers of decision making.

Our project purposes were two-fold: first we wanted to evaluate the conservation practices chosen by the ETPBR LCC to determine which practices provide the greatest benefits to wildlife and habitats. Although the NRCS evaluation tool has several criteria for soil and water quality evaluation, it is lacking in wildlife, habitat, and climate change evaluation criteria, we have developed our own criteria to assess habitat and climate change benefits. In order for landowners and land managers to choose conservation practices effectively, they must understand the level of benefits each practice provides, in terms of the landowners' individual objectives. For example, while some landowners are more interested in soil health benefits, others may be more interested in improving habitat quality; for these distinct objectives, different conservation practices are likely to apply.

Second, we wanted to determine how climate change could potentially shape the conservation plan. By considering multiple potential future scenarios and determining how these scenarios will change the landscape and how they will affect landowners' decisions, we can determine which conservation practices will be most relevant and useful under each scenario.

2. Conservation Practices

The ETPBR LCC investigated various conservation practices to address the landscapescale conservation goals identified as part of the Gulf Hypoxia Initiative. Twelve conservation practices were selected based on workshops, stakeholder meetings, and input from the Natural Resources Conservation Service (NRCS). The ETPBR LCC published 12 corresponding <u>fact</u> <u>sheets</u> which introduce each practice and provide an overview of the benefits and limitations. Our team utilized these fact sheets and further literature review to narrow the ETPBR LCC's list of conservation practices down to the 7 practices which appear best suited for the Lower Wabash region (Table 2). These 7 practices were selected based on their applicability to the Lower Wabash region land types and land uses. Several of the original 12 practices were specific to the coastal floodplains and wetlands associated with the Lower Mississippi Basin.

Table 2. Twelve conservation practices selected by the ETPBR LCC and their applicability to the Lower Wabash Watershed.

Applicable to Lower Wabash	Not Applicable				
Wetland restoration and management	Lower floodplain water diversion				
Lower floodplain reforestation	Grassland and grazing management				
Buffer strips	Biomass production				
Cover crops	Prescribed fire				
Drainage water management	Lower floodplain vegetative diversity				
Two-stage ditches					
Upper floodplain hydrologic restoration					
	1				

Conservation Practices

Many of the ETPBR LCC's conservation practices were selected or developed from the NRCS's Field Office Technical Guide (FOTG) which documents and provides technical specifications for national conservation practices. The NRCS developed the Conservation Practice Effects Summary Tool (CPPE) to tabulate and assess each conservation practice's costs and benefits. The CPPE uses several criteria relating to soil, water, and air quality effects, as well as each practice's effects on plant, animal, and livestock (Appendix 1).

Although the CPPE tool provides useful conservation practice information to planners and managers, there is significant room for expansion regarding the habitat and wildlife criteria used to assess and compare practices. Further, criteria regarding the resiliency and success of practices in future climates could be an important asset to producers and managers operating in future conditions. Section 3 of this paper provides our suggestions for additional criteria that will improve the CPPE's ability to assess conservation practices based on their effects on wildlife, habitat conservation, and future climate conditions. Section 3 also provides an analysis on whether our 7 selected conservation practices meet these new criteria.

3. Evaluation of Conservation Practices

3.1 Introduction

In order for landowners and land managers to choose conservation practices effectively, they must understand the level of benefits each practice provides, in terms of the landowners' individual objectives. For example, while some landowners are more interested in soil health benefits, others may be more interested in improving habitat quality; for these distinct objectives, different conservation practices are likely to apply. In the following three sections, we provide evaluations of 7 conservation practices for soil, water, wildlife, habitat, and climate change benefits, and landowner costs.

3.2 Evaluation of Soil and Water Benefits

As mentioned above, the NRCS has evaluated many of the effects of different conservation practices on soil and water quality. In this section, we will summarize the findings of the NRCS for the 7 selected practices. Because wetland restoration and lower floodplain reforestation typically occur simultaneously, they were tied together as a single practice for the purposes of this evaluation. They will be referred to as wetland restoration and reforestation, hereafter. Descriptions of conservation practices and justifications of the benefits provided by practices can be seen in the appendix (Appendix 2). Please reference included spreadsheet for breakdown of scores.

Soil quality criteria include soil erosion benefits and benefits for degraded soil (for detailed descriptions see <u>Appendix 1</u>). Wetland restoration and reforestation provide the most benefit to soil health by reducing erosion and contributing to soil organic matter. Cover crops also reduce erosion and contribute to soil organic matter, with a slightly lower score. Hydrologic restoration could create adverse effects to soil health by increasing erosion (Figure 3.2.1). However, hydrologic restoration in the Lower Wabash refers to breaking levees, which would likely slow water flow and reduce erosion.

Figure 3.2.1 Soil quality benefits among conservation practices evaluated for Lower Wabash Watershed, Indiana and Illinois, based on NRCS criteria. Practices are shown ranked from highest to lowest soil-quality benefit score.

Using the current NRCS criteria, wetland restoration and reforestation appear to provide the highest benefit to water quality by taking up excess water and nutrients, improving infiltration, and reducing runoff and erosion. Cover crops provide very similar services, with a slightly lower score. Buffer strips provide the fewest water quality benefits (Figure 3.2.2).

Figure 3.2.2 Water quality benefits among conservation practices evaluated for Lower Wabash Watershed, Indiana and Illinois, based on NRCS criteria. Practices are shown ranked from highest to lowest water-quality benefit score.

3.3 Evaluation of Habitat, Wildlife, and Climate Change Benefits, and Landowner Costs

Methods

Because the NRCS CPPE tool is lacking in wildlife, habitat, and climate change evaluation criteria, we have developed our own criteria: biodiversity, invasive species, indicator species, flood control, and climate change resilience (see descriptions in Appendix 1). We have combined our criteria with the NRCS criteria: food, water, cover, continuity, plant condition, energy efficiency and air quality impacts to perform habitat and climate change benefit evaluations. To quantify our findings, we have scored each metric with 1 for a positive effect, 0 for no effect, and -1 for a negative effect. Areas of uncertainty, where studies are needed were assigned a 'U' for unknown.

Results

Buffer strips, wetland restoration and reforestation, and cover crops provide benefits for all 8 of the wildlife and habitat criteria metrics: food, cover, water, continuity, biodiversity, invasive species control, vegetation quality, and presence of indicator species (Figure 3.3.1). Two-stage ditches and drainage water management have 1 unknown variable in terms of wildlife benefits and hydrologic restoration has 2 unknown variables. Unknown variables could shift the total score either direction depending on whether they provide positive or negative impacts.

Figure 3.3.1 Habitat and wildlife benefits among conservation practices evaluated for Lower Wabash Watershed, Indiana and Illinois, determined by the proposed criteria we developed. Practices are shown ranked from highest to lowest habitat-quality benefit score. Asterisks denote number of unknown variables.

Buffer strips, wetland restoration and reforestation, and cover crops meet all 4 criteria for climate change mitigation: air pollution reduction, efficient use of energy, flood control, and resilience to climate change. Drainage water management meets 3 of the criteria, excluding efficient energy usage. Hydrologic restoration only meets 2 criteria and two-stage ditches only meet 1 (Figure 3.3.2).

Figure 3.3.2 Climate change benefits among conservation practices evaluated for Lower Wabash Watershed, Indiana and Illinois, determined by the proposed criteria we developed. Practices are shown ranked from highest to lowest climate change benefit score.

We also developed criteria to evaluate landowner cost: price, incentive opportunity, and crop yield. To quantify these criteria, we developed a simple ranking system. For price, subjective observations determined which practices were expensive versus inexpensive. Expensive practices were assigned a '-1' and inexpensive practices were assigned a '1'; practices with incentive programs were given a '1', and practices with no incentive programs were assigned a '0'. Practices that decrease crop yield, by taking land out of production, were assigned a '-1', no effect was given a '0', and increase in crop yield, such as making soil more fertile, was given a '1'.

According to the criteria chosen, cover crops impose the fewest costs on landowners, followed by two-stage ditches, and drainage water management. Buffer strips and wetland restoration impose higher costs on landowners (Figure 3.3.3). Hydrologic restoration is an expensive practice that will not be implemented by individual landowners, but rather by the Army Corps of Engineers.

Figure 3.3.3 Affordability of conservation practices evaluated for Lower Wabash Watershed, Indiana and Illinois, determined by the proposed criteria we developed. Practices are shown ranked from lowest to highest landowner costs.

3.4 Overall Evaluation of Conservation Practices

Across all criteria evaluated, it is clear that wetland restoration and reforestation provide the most and highest diversity of benefits (Figure 3.4). Cover crops provide the second greatest benefits across all criteria.

Figure 3.4 Overall benefits among conservation practices evaluated for the Lower Wabash Watershed, Indiana and Illinois, determined by both the NRCS criteria and the proposed criteria we developed. Practices are shown ranked from highest to lowest total benefit score.

3.5 Limitations of Evaluations

We have identified several limitations with our evaluation methods, that we hope can be improved upon in the future. The biggest limitation is the simplicity of our ranking system. Firstly, the scores only identify if a conservation practice provides habitat and climate change benefits, and not how well they provide these benefits. For example, both wetland restoration and two-stage ditches increase habitat continuity, and both received a score of '1', although wetland restoration would clearly provide greater continuity. Secondly, all criteria for habitat and climate change are worth the same amount of points, although some criteria would likely be more valuable than other criteria. For example, increasing biodiversity may be a more valuable criterion for evaluation than providing cover. Lastly, comparing and quantifying conservation practices leaves room for error due to variation within practices. For example, wetland restoration can provide various benefits based on factors such as size, depth, and inundation. Cover crops can provide various benefits based on which plants are chosen, when they are planted, and methods of removal.

3.6 Wildlife Resources

3.6.1 Introduction

Implementing conservation practices is important for restoring ecosystem services. Lands with conservation practices may also provide habitat and food sources for wildlife. Conserving wildlife is critical for ecological, economical, ethical, and aesthetic reasons. Many species are threatened by human-induced impacts, such as habitat loss, degradation, and fragmentation, and the endangered species list continues to lengthen. Climate change may create opportunities for some species to thrive, but will certainly exacerbate the existing threats that wildlife already faces.

There are a total of 859 fish and wildlife species distributed throughout Indiana, where freshwater mussels are the only invertebrates included. This number includes more than 750 species of nongame and endangered species. Due to the large number of individual species, we combined species into "functional groups" as our basic unit for assessing the benefits of the six selected conservation practices. According to Hulot's research (Hulot and Bern, 2006), species with similar responses or effects to the environment or major ecosystem processes could be defined as belonging to the same functional group. Species in the same functional group are grouped by similar species traits.

3.6.2 Conservation Practice Benefits for Functional Groups

Methods

We documented the species and functional groups which the MRB/GHI LCC <u>factsheets</u> (Table 3.6.2a) identified as benefitting from the selected conservation practices. The majority of habitat and diet information for each species was obtained from the online database "<u>animaldiversity</u>". Additional species information was collected from the database "<u>natureserve</u>" (see species habitat and diet information in Appendix 3.2). After analyzing the potential ecological benefits, mainly habitat and diet related, for these species and groups, we decided to use functional groups which have similar habitat conditions and food sources as our evaluation units.

Buffer Strips	Wetland Restoration & Reforestation	Cover Crops*	Water Drainage Mgmnt.	Two-stage Ditches	Hydrologic Restoration
Blue-winged teal (Migratory waterfowl)	Blue-winged teal (Migratory waterfowl)	Wheat: (Birds)	American golden plover (Upland birds)	Blackside darter (Small herbivore fish)	Game fish (Medial & large fish)
Belted kingfisher (Migratory waterfowl)	Gadwall (Migratory waterfowl)	Wheat: (Upland birds)	Blue-winged teal (Migratory waterfowl)	Creek chub (Small omnivore fish)	Paddlefish (Large omnivore fish)
Acadian flycatcher (Riparian birds)	(Early life stages of many fish)	Camelina: (Pollinators and other invertebrates)		Johnny darter (Small carnivore fish)	(Waterfowl)
Pheasant (Upland birds)	(Reptile)	Camelina: (Birds)		Sculpin (Small omnivore fish)	(Shorebirds)
Quail (Upland birds)	(Amphibian)			Topeka shiner (Small omnivore fish)	(Wetland birds)
Blackside darter (Small herbivore fish)				Black redhorse (Medial omnivore fish)	
Creek chub (Small omnivore fish)				Pugnose minnow (Small omnivore fish)	
Johnny darter (Small carnivore fish)				River redhorse (Medial carnivore fish)	
Sculpin (Small omnivore fish)				Smallmouth bass (Medial carnivore fish)	
Smallmouth bass (Medial carnivore fish)				American golden plover (Upland birds)	
Copper-bellied water snake (Reptile)				Blue-winged teal (Migratory waterfowl)	
(Mussel)					

Table 3.6.2a Species (their corresponding functional groups) benefiting from conservation practices

* Wheat and Camelina are crop types used as Cover Crops

Results

Using the MRB/GHI LCC factsheets, and the data on species size, habitat, and diet, we created 14 functional groups under five major animal categories. Please see Table 3.6.2b for information relating functional groups and conservation practices. For the six conservation practices, we found:

- 1. Buffer strips benefited most of the categories listed, except for invertebrates.
- 2. Wetland restoration & reforestation benefited birds, fish, reptiles and amphibians.
- 3. The remaining conservation practices each benefited two categories, but the groups that benefited varied according to each conservation practice.

Cover crops are a broad category, which include many different plant varieties, such as wheat and camelina. Using different cover crop varieties affects different functional groups. A detailed analysis of benefits provided per crop type would be useful and could provide a basis for future study.

Under each species category:

Birds: Buffer strips provided more benefits to upland birds than wetland birds. All other conservation practices provided more benefits to wetland birds.

Fish: Wetland restoration and reforestation benefitted all varieties of fish studied. Twostage ditches and buffer strips mainly benefitted small and medium fish while hydrologic restoration provided benefits to medium and large fish. The remaining conservation practices did not have a direct influence on fish.

Reptiles and amphibians: Buffer strips and wetland restoration and reforestation provided benefits.

Freshwater mussels: Only buffer strips provided benefits to mussels.

Invertebrates (pollinators): Only cover crops provided benefits to pollinators.

Туре	Functional Group	Conservation Practices					
		Buffer Strips	Wetland Restoration & Reforestation	Cover Crops*	Water Drainage Mgmnt.	Two-stage Ditches	Hydrologic Restoration
Bird	Migratory waterfowl	+	+		+	+	+
	Riparian bird	+					+
	Shorebird			+			+
	Upland bird	+		+	+	+	
Fish	Slow water small fish	+	+			+	
	Flowing water small fish	+	+			+	
	Flowing water medial fish	+	+			+	+
	Flowing water large fish		+				+
Reptile and amphibian	Reptiles and amphibians	+	+				
Mussel	Mussels	+					
Invertebrate	Pollinator			+			

Table 3.6.2b Functional groups benefiting from conservation practices

* Different cover crop types might benefit different functional groups.

Figure 3.6.2 Number of functional groups benefitted by conservation practices evaluated for the Lower Wabash Watershed, Indiana and Illinois. Benefits were determined by LCC fact sheets and functional groups were determined by our proposed methods. Practices are shown ranked from highest to lowest number of functional groups benefitted.

Summary

Based on our functional group analysis, buffer strips appeared to benefit a greater diversity of species or species types than any other practice. Wetland restoration and reforestation supported the second greatest number of functional groups.

Limitations

A few details of conservation practices (for instance, cover crops plant types) are not discussed, which needs to address in further analysis. Different seasonal effects are not discussed. This information would be highly valuable for migration birds and fish, which needs to address in further analysis, too.

Because of our limited time, and reliance on a single resource, it is possible that not all functional groups that benefit from each practice are documented. We are also missing data for major categories, such as mammals. We are also uncertain if all functional groups should be weighted the same, or if some groups indicate a higher habitat quality than others.

3.6.3 Evaluation of Conservation Practices Wildlife Benefits for Focal Habitats

Method

According to the Lower Wabash LDC draft plan, there are 13 basic habitat types and associated species in our study area: big rivers, oxbows, sandbars/islands, bottomland hardwood forests, emergent marshes, giant cane brakes, vernal pools, scrub-shrub wetlands, spring-fed seeps, mudflat/moist soil/bottomland and hydric agriculture, upland agriculture fields,

grasslands, tributaries and streams. We selected six of these habitat types to evaluate the effects of conservation practices based on the degree of conservation practice influence and our focus on agricultural lands.

Big Rivers: paddlefish, mussels, sturgeon.

Mudflat/moist soil/bottomland & hydric agriculture: short-billed dowitcher, lesser yellowleg, pectoral sandpiper, whooping cranes, *duck species (TBA)*, pintails, American golden plover, interior least tern.

Upland agricultural fields: Bobwhite quail, pollinators, America golden plover.

Grasslands: Henslow's sparrow, grasshopper sparrow, pollinators, meadowlark, barn owl, short-eared owls, northern harriers, bobwhite quail, crawfish frog.

Tributaries / Streams: Hellbenders, mussels, invertebrates.

Bottomland hardwood forests: Indiana bat, wood duck, prothonotary warblers, redshouldered hawk, bald eagle, green tree frogs.

Habitat and diet information for each species was collected predominantly from the online database "<u>animaldiversity</u>". We grouped the species into functional groups for each habitat (See <u>Appendix 3.3</u>), and used the wildlife benefits information from Section 3.6.2 (Table 3.6.2b) to evaluate whether the six conservation practices had a positive effect on each habitat. The evaluations of conservation practices from the focal Habitats wildlife angle is summarized in table 3.6.3a.

Habitat	Functional groups	Conservation Practices Impact to Functional Group					
		Buffer Strips	Wetland Restoration & Reforestation	Cover Crops*	Water Drainage Mgmnt.	Two-stage Ditches	Hydrologic Restoration
Big Rivers	Flowing water large fish		+				+
	Mussel	+					
Mudflat/moist soil/bottomland &	Shorebird						+
hydric agriculture	Migratory waterfowl	+	+	+	+	+	+
	Upland bird	+		+	+	+	
Upland agricultural fields	Upland bird	+		+	+	+	
	Pollinator			+			
Grasslands	Upland bird	+		+	+	+	
	Pollinator			+			
	Upland bird: owls and hawks*						
	Reptiles and amphibians	+	+				
Tributaries / Streams	Reptiles and amphibians	+	+				
	Mussel	+					
	Invertebrates*						
Bottomland	Bat*						
hardwood forests	Migratory waterfowl	+	+	+	+	+	+
	Upland bird	+		+	+	+	
	Upland bird: owls and hawks*						

Table 3.6.3a Evaluations of Wildlife Benefits of Conservation Practices in 6 Widely Distributed Focal Habitats

*Functional groups are not listed as beneficial groups for all the 6 conservation practices in LCC factsheets.

Results

Table 3.6.3b summarizes recommendations for conservation practices for the six focal habitat types:

Big Rivers: Important functional groups for big rivers are large fish and mussels. There are three conservation practices which most benefit this habitat: **buffer strips** benefit mussels, while **wetland restoration & reforestation** and **hydrologic restoration** provide benefits to large fish.

Mudflat/moist soil/bottomland & hydric agriculture: Functional groups of special concern in this habitat are wetland and upland birds. All six conservation practices provide benefits to birds in this habitat. Buffer strips, cover crops, water drainage management, and two-stage ditches are recommended since they provide benefits to both wetland birds and upland birds. Wetland restoration & reforestation and hydrologic restoration provide the most benefits for wetland birds.

Upland agricultural fields: Upland birds and pollinators are the important functional groups in this habitat. **Cover crops** are highly recommended since they can benefit both functional groups. **Buffer strips, water drainage management,** and **two-stage ditches** are also recommended for helping upland birds.

Grasslands: Upland birds, pollinators and reptiles and amphibians are the functional groups of special concern for grasslands. Buffer strips and cover crops are both recommended to benefit these species. However, since cover crops might not be used for grasslands, **buffer strips** are the recommended conservation practice. **Water drainage management** and **two-stage ditches** are also recommended for helping upland birds, while **wetland restoration & reforestation** in certain areas benefit reptiles and amphibians. Within the upland birds functional group, owls and hawks do not appear to benefit from the six conservation practices, according to the LCC <u>factsheets</u>.

Tributaries / Streams: Reptiles and amphibians, and mussels and invertebrates are the functional groups of special concern in this habitat. **Buffer strips** and **wetland restoration & reforestation** are recommended.

Bottomland hardwood forests: Upland and wetland birds, as well as bats are the functional groups of special concern in this habitat. All six conservation practices could be used to benefit birds. Conservation practices that may be used near bottomland hardwoods include **buffer strips, cover crops, water drainage management,** and **two-stage ditches**; these benefit both wetland and upland birds. Wetland restoration & reforestation and hydrologic restoration are recommended for benefiting wetland birds. Bats are not considered to benefit from the six conservation practices.

Habitat	Conservation Practices Impact to Functional Group					
	Buffer Strips	Wetland Restoration & Reforestation	Cover Crops*	Water Drainage Mgmnt.	Two-stage Ditches	Hydrologic Restoration
Big Rivers	Recomme nded for mussels	Recommended for large fish	Recomme nded for large fish			
Mudflat/moist soil/bottomland & hydric agriculture	Most recomme nded	Recommended for wetland birds	Most recomme nded	Most recommend ed	Most recomme nded	Recommende d for wetland birds
Upland agricultural fields	Recomme nded for upland birds		Most recomme nded	Recommend ed for upland birds	Recomme nded for upland birds	
Grasslands	Most recomme nded	Recommended for reptiles and amphibians	Most recomme nded	Recommend ed for upland birds	Recomme nded for upland birds	
Tributaries / Streams	Most recomme nded	Recommended for reptiles and amphibians				
Bottomland hardwood forests	Most recomme nded	Recommended for wetland birds	Most recomme nded	Most recommend ed	Most recomme nded	Recommende d for wetland birds

Table 3.6.3b The most recommended Conservation Practices in the 6 Widely Distributed Focal Habitats

*Applicability of conservation practices is not discussed in this table. It could be added as next step when considering for picking the most suitable conservation practices.

Summary

Based on our Table 3.6.3b analysis, buffer strips and cover crops works for 4 focal habitat types. Water Drainage Management and Two-stage Ditches are highly recommended for Mudflat/moist soil/bottomland & hydric agriculture, and Bottomland hardwood forests. While Wetland Restoration & Reforestation could be used as a good complement practice to other practices.

Limitations

Because of our limited time, we only discussed 6 conservation practices. Some functions groups are not covered by all these 6 practices. Other conservation practices should also be considered later. For other conservation practices, the same method could be used to selecting potential suitable conservation practices.

The adaptability and applicability of conservation practices in each focal habitat are not discussed in our analysis. It could be addressed as next step analysis.

3.6.4 Further Research Suggestion

The <u>Indiana DNR's website</u> provide fish and wildlife resources information. Rare species are also provided. Special concerns of rare species could be added in conservation practices.

For wildlife benefits listed in LCC conservation practices factsheet, some information mammal species (endangered or species concerned) could also be included. Besides species benefiting from conservation practices, some species might also meet disadvantages by some conservation practices (loss habitat, for instance). The wildlife side effect information is also valuable, and should be taken into consideration when making decision.

4. Climate Change in the Lower Wabash Watershed

4.1 Introduction

Climate conditions and ecosystems are fundamentally interrelated. Climate conditions shape ecosystems and influence the ecosystem services that an area can provide, as well as affect an ecosystem's ability to mitigate and respond to weather events. Changes in future climate conditions are a significant source of uncertainty regarding the success of wildlife conservation practices. Future climate conditions are predicted to reduce the ability of ecosystems to regulate water flows and improve water quality The US Global Change Research Program's (USGCRP) 2014 National Climate Assessment asserts that climate change will impede current conservation goals, and require some conservation plans to reassess their strategies (US Global Change Research Program, 2014).

Projections for the impacts of climate change in the Midwest have predicted that:

- air and water temperatures will continue to rise
- the number of consecutive days over 95°F will increase
- the total number of days with a minimum temperature of less than 10°F will decrease
- the total the number of days below 32°F will decrease
- the freeze-free season (the period of time between the last spring frost and the first fall frost) will increase
- winter, spring, and fall precipitation will increase, and summer precipitation will decrease
- occurrence of dangerous heat events and summer drought will increase
- growing season will be longer
- flooding events will increase
- complex interactions with hydrology, fire, water chemistry, toxicity and other abiotic factors, and may disrupt predator/prey, disease/host, competition, mutualisms, and other interspecific interactions

• heavier rainfall events may degrade water quality by introducing heavy sediment, untreated sewage, and pollutant loads into waterways

These are just some of the future projections and they are shrouded with uncertainty and complex interactions, making future planning a daunting task (Hatfield et al., 2015).

4.2 Climate Change Scenario Planning

As demonstrated above, with climate change, comes much uncertainty. In order for societies to adapt quickly to unpredictable outcomes, scenario planning is a useful tool. Scenario planning is accomplished by pairing 2 external drivers that will have a high impact on future conditions, but are unpredictable; therefore, multiple scenarios must be considered. These drivers are considered external because they are out of the control of the decision maker. The outcome of scenario planning is 4 distinct future scenarios. Conservationists can consider the 4 possible futures to create adaptive management plans.

Under climate change, flooding and drought events are expected to increase. It is difficult to determine exactly when and where these events will occur. To be prepared, we must develop a plan for each scenario. A non-climate driver that will impact landowners' decisions is crop prices. Pairing these 2 drivers created 4 distinct and equally possible scenarios of future conditions in the Lower Wabash region.

The first scenario involves high levels of flooding and low crop prices, the second scenario involves high levels of flooding and high crop prices, the third scenario involves high levels of drought and low crop prices, and the fourth scenario involves high levels of drought and high crop prices. By determining how these scenarios will change the landscape and how they will affect landowners' decisions, we can determine which conservation practices will be most relevant and useful under each scenario.

Scenario 1: High Water, Low Prices

Scenario 1 describes high levels of flooding and low payout for crop production. In this scenario, not only is the land physically unfavorable for growing crops, it is also financially unfavorable. This scenario could motivate farmers to enroll in conservation easement programs, or it could drive up insurance claims and subsidies. Farmers may become interested in diversifying their income by allotting some land for recreational use. Persistent flooding and low prices will likely drive farmers to sell.

If farmers intend to keep their land, wetland restoration, two-stage ditches and drainage water management can act as a sinks for excess water and divert water away from crops. Additionally, restored wetlands and drainage water management can create recreational areas and have the potential to provide additional income. Buffer strips and cover crops can help slow water flow and reduce flood related erosion. Flood tolerant cover crops can be selected for greater benefits. If cover crops are marketable, they could provide a potential income stream. If farmers decide to sell, wetland restoration would be the most beneficial practice, and hydrologic restoration may be beneficial to divert water to other areas.

Scenario 2: High Water, High Prices

Scenario 2 describes high levels of flooding and high payout for crop production. Farmer's decisions may be more heavily shaped by the crop market than climatic conditions. Farmers will be more likely to increase water control practices so they can continue to farm. They may take more risks and ultimately file more insurance claims, or they may receive more subsidies. Farmers will be less likely to sacrifice land for conservation practices, if it could otherwise be used for crop production.

Drainage water management would be very beneficial for scenario 2, because it can remove water from the landscape without sacrificing any available cropland. Cover crops can also be beneficial by slowing water flow and reducing erosion, and they are grown in the off season, so they won't interfere with crop production. Buffer strips are typically implemented in marginal areas that would not be used for crops and therefore would not impede on crop production. Buffer strips would slow water flow and reduce erosion.

Scenario 3: Low Water, Low Prices

Scenario 3 describes high levels of drought and low payout for crop production. Similar to scenario 1, the land is physically and financially unfavorable for growing crops. Likewise, this scenario could motivate farmers to enroll in conservation easement programs, file insurance claims, or receive subsidies. Diversifying income may be more difficult in drought conditions than flood conditions. Farmers may be motivated to sell if these conditions persist.

Wetland restoration and drainage water management would be beneficial under drought conditions, because they can retain water on the landscape for longer. Using drought tolerant cover crops can also help retain water and provide shade, and possibly provide additional income. Hydrologic restoration may be able to divert water to high drought areas.

Scenario 4: Low Water, High Prices

Scenario 4 describes high levels of drought and high payout for crop production. Farmers will be more likely to receive subsidies or file insurance claims than reduce productivity. Similar to scenario 3, farmers will be unlikely to sacrifice land for conservation practices.

Drainage water management can retain water on the landscape and drought tolerant cover crops can help retain moisture in the soil. Both of these practices will allow farmers to utilize all of their land for crop production.

Summary

Buffer strips, wetland restoration, and two-stage ditches are more likely to be implemented when crop prices are low, because landowners will not want to sacrifice land if crop prices are high. Buffer strips may be an exception to this rule, as they are typically created in marginal areas with low crop yields. Cover crops and drainage water management do not interfere with crop yield, so they may be implemented during low or high crop price scenarios. Hydrologic restoration is not applicable to individual landowners, but may apply if conditions are such that farmers sell their land.

Wetland restoration, hydrologic restoration, and drainage water management would be beneficial during drought events because they would provide a source of water; cover crops help to retain moisture on the landscape and drought tolerant species can be used. Wetland restoration, hydrologic restoration, drainage water management, and two-stage ditches can be beneficial sinks to hold excess water during high flood conditions. Buffer strips and cover crops can be beneficial during flood periods because they help to slow water flow and reduce erosion associated with heavy flow.

Cover crops and drainage water management are beneficial across all scenarios (Figure 4.2.5). Buffer strips are beneficial in high flood conditions, regardless of crop market. Wetland restoration and hydrologic restoration are beneficial during low crop prices, regardless of climatic condition; these practices would therefore be beneficial on public or protected lands, where crop market isn't a factor.

Figure 4.2.5 Evaluation of which conservation practices will be most beneficial under contrasting crop market and climatic scenarios.

5. Final Recommendations

In terms of wildlife and habitat, and climate change benefits, buffer strips, cover crops, and wetland restoration and reforestation provide the greatest benefits. In terms of overall criteria, wetland restoration and reforestation, drainage water management, and cover crops provide the highest levels of benefits. During scenario planning, we found that cover crops and drainage water management are beneficial under 4 distinct possible future scenarios. This implies that they are versatile practices.

Because of the versatility of drainage water management and cover crops, and because of their high scores during evaluation, we recommend that they be widely implemented and promoted in the Lower Wabash Watershed. Wetland restoration and reforestation and buffer strips are also very useful practices that are versatile under climate change and provide high levels of habitat and climate change benefits.

Hydrologic restoration ranked the lowest in many categories, including overall, and also has the greatest amount of unknown factors. Before resorting to hydrologic restoration as a way to manage water levels, it should be studied for habitat effects. It is known to have negative effects on stream species through habitat loss and food web disruption. There is limited information on how it affects biodiversity, or if it promotes invasive species. Hydrologic restoration may have more negative effects than are currently understood, and we urge that it should be used with caution.

If we had to recommend just one practice to farmers, we would recommend cover crops because of the high versatility, high level of benefits, and low costs. If we had to recommend only one practice to conservationists, we would recommend wetland restoration and reforestation because it provides high levels of habitat benefits and mitigation for climate change.

Acknowledgments

We would like to thank our client, Mike Sertle and our professors, Gwen White and Vicky Meretsky for their feedback and support during the development of this project. Thanks to our LCC contacts Jorgen Rose and Abby Donnelly for providing us with many resources and giving us feedback. Thanks to our contacts at Indiana Department of Environmental Management (IDEM) for providing us with water quality data for the Lower Wabash Watershed.

References

Clark, William R. and Reeder, K. (2007). Agricultural buffers and wildlife conservation: a summary about linear practices. The Wildlife Society Technical Review. ftp://mail.manomet.org/WildlifeandEnergy/Literature_8July10/WCS_linear_practices_litreview_2007.pdf

Eastern Tallgrass Prairie and Big Rivers, Landscape Conservation Cooperative (ETPBR LCC). (2016). Gulf hypoxia conservation practice sheets. 'Fact sheets'. https://tallgrassprairielcc.org/resource/gulf-hypoxia-conservation-practice-sheets

Evans, R., Gilliam, J. W., and Lilly, J. P. (1996). Wetlands and water quality. North Carolina Cooperative Extension Service. AG 473-7. http://www.bae.ncsu.edu/programs/extension/evans/ag473-7.html

Gaston, K. A. (October 27, 2016). [Personal Communication]. Located at: Indiana Department of Environmental Management (IDEM), Assessment Information Management System (AIMS) Database, Indianapolis, Indiana.

Gulf Coastal Plains and Ozarks LCC. (2016). Mississippi River Basin/Gulf Hypoxia Initiative. <u>http://gcpolccapps.org/projects/ProjectPage.aspx?id=289</u>

Hatfield, J., Swanston, C., Janowiak, M., Steele, R., Hempel, J., Bochicchio, J., Hall, W., Cole, M., Hestvik, S., and Whitaker, J. (2015). Midwest and Northern Forests Regional Climate Hub assessment of climate change vulnerability and adaptation and mitigation strategies. United States Department of Agriculture. 55pp.

http://climatehubs.oce.usda.gov/sites/default/files/pdf/Midwest%20Region%20Vulnerability%20 Assessment%203_20_2015.pdf

Maloney, M. (2014). River reintroduction into Maurepas Swamp. Louisiana Wildlife Federation. <u>http://lacamo.org/2014/11/river-reintroduction-into-maurepas-swamp/</u>

Mayer, P. M., et al. (2005). Riparian buffer width, vegetative cover, and nitrogen removal effectiveness: a review of current science and regulations. US EPA National Risk Management Research Facility.

http://www.memphremagog.org/FCKeditor/ckfinder/userfiles/files/Centre_de_documents/FR/EP A-Riparian-Buffer-Width.pdf

McMurray, J., and Paul, D. (October 27, 2016). [Personal Communication]. Located at: Indiana Department of Environmental Management (IDEM), Assessment Information Management System (AIMS) Database, Indianapolis, Indiana.

Mississippi River/Gulf of Mexico Watershed Nutrient Task Force. (2008). Gulf Hypoxia action plan 2008 for reducing, mitigating, and controlling hypoxia in the Northern Gulf of Mexico and improving water quality in the Mississippi River Basin. Washington, DC. https://www.epa.gov/sites/production/files/2015-

03/documents/2008_8_28_msbasin_ghap2008_update082608.pdf

Natural Resources Conservation Service (NRCS). (n. d.). Conservation practice effects summary tool (CPPE). Washington, DC.

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/econ/tools/?cid=nrcs143_00 9735

Natural Resources Conservation Service (NRCS). (2011). Illinois cropland suitable for water drainage management. Washington, DC. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/?cid=stelprdb1046651

Natural Resources Conservation Service (NRCS). (2011). Indiana acres of cropland suitable for water drainage management by county. Washington, DC. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/?cid=stelprdb1046651

Perry, L. G., Cronin, S. A., and Paschke, M. W. (2009). Native cover crops suppress exotic annuals and favor native perennials in a greenhouse competition experiment. Plant Ecology. 204(2):247-259.

Perry, L. G., and Galatowitsch, S. M. (2003). A test of two annual cover crops for controlling *Phalaris arundinacea* invasion in restored sedge meadow wetlands. Restoration Ecology. 11(3):297–307.

Radomski, A. (2013). US Fish and Wildlife Service. Oak Woodlands and Fire Consortium. https://www.fws.gov/southeast/es/partners/pdf/October-2013Final.pdf

The Nature Conservancy (TNC). (2016). The two-stage ditch is a win-win for agriculture and conservation. Arlington, VA.

http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/indiana/howwework/two-stage-ditches.xml

US Forest Service. (2009). North Central Region bottomland hardwood management guide: a cooperative project of the USDA Forest Service and University of Minnesota. http://www.ncrs.fs.fed.us/fmg/nfmg/bl_hardwood/index.html

Appendices:

Appendix 1. Descriptions of Criteria

Appendix 1. Descriptions of criteria used to evaluate conservation practices (modified from NRCS CPPE tool).

Criteria	Description
SOIL	
SOIL EROSION - Sheet, rill, & wind erosion	Detachment and transportation of soil particles caused by rainfall runoff/splash, irrigation runoff or wind that degrades soil quality
SOIL EROSION – Concentrated flow erosion	Untreated classic gullies may enlarge progressively by head cutting and/or lateral widening. Ephemeral gullies occur in the same flow area and are obscured by tillage. This includes concentrated flow erosion caused by runoff from rainfall, snowmelt or irrigation water.
SOIL EROSION– Excessive bank erosion from streams shorelines or water conveyance channels	Sediment from banks or shorelines threatens to degrade water quality and limit use for intended purposes
SOIL QUALITY DEGRADATION - Subsidence	Loss of volume and depth of organic soils due to oxidation caused by above normal microbial activity resulting from excessive water drainage, soil disturbance, or extended drought. This excludes karst / sinkholes issues or depressions caused by underground activities.
SOIL QUALITY DEGRADATION – Compaction	Management induced soil compaction resulting in decreased rooting depth that reduces plant growth, animal habitat and soil biological activity
SOIL QUALITY DEGRADATION – Organic matter depletion	Soil organic matter is not adequate to provide a suitable medium for plant growth, animal habitat, and soil biological activity
SOIL QUALITY DEGRADATION – Concentration of salts or other chemicals	Concentration of salts leading to salinity and/or sodicity reducing productivity or limiting desired use Concentrations of other chemicals impacting productivity or limiting desired use
WATER	

EXCESS WATER – Ponding, flooding, seasonal high water table, seeps, and drifted snow	Surface water or poor subsurface drainage restricts land use and management goals. Wind- blown snow accumulates around and over surface structures, restricting access to humans and animals.
INSUFFICIENT WATER – Inefficient moisture management	Natural precipitation is not optimally managed to support desired land use goals or ecological processes
INSUFFICIENT WATER – Inefficient use of irrigation water	Irrigation water is not stored, delivered, scheduled and/or applied efficiently Aquifer or surface water withdrawals threaten sustained availability of ground or surface water Available irrigation water supplies have been reduced due to aquifer depletion, competition, regulation and/or drought
WATER QUALITY DEGRADATION – Excess nutrients in surface and ground waters	Nutrients - organic and inorganic - are transported to receiving waters through surface runoff and/or leaching into shallow ground waters in quantities that degrade water quality and limit use for intended purposes
WATER QUALITY DEGRADATION – Excess nutrients in surface and ground waters	Nutrients - organic and inorganic - are transported to receiving waters through surface runoff and/or leaching into shallow ground waters in quantities that degrade water quality and limit use for intended purposes
WATER QUALITY DEGRADATION – Pesticides transported to surface and ground waters	Pest control chemicals are transported to receiving waters in quantities that degrade water quality and limit use for intended purposes
WATER QUALITY DEGRADATION – Excess pathogens and chemicals from manure, bio-solids or compost applications	Pathogens, pharmaceuticals, and other chemicals carried by land applied soil amendments are transported to receiving waters in quantities that degrade water quality and limit use for intended purposes. This resource concern also includes the off-site transport of leachate and runoff from compost or other organic materials of animal origin.
WATER QUALITY DEGRADATION – Excessive salts in surface and ground waters	Irrigation or rainfall runoff transports salts to receiving water in quantities that degrade water quality and limit use for intended purposes
WATER QUALITY DEGRADATION – Petroleum, heavy metals and other pollutants transported to receiving waters	Heavy metals, petroleum and other pollutants are transported to receiving water sources in quantities that degrade water quality and limit use for intended purposes

WATER QUALITY DEGRADATION – Excessive sediment in surface waters	Off-site transport of sediment from sheet, rill, gully, and wind erosion into surface water that threatens to degrade surface water quality and limit use for intended purposes					
WATER QUALITY DEGRADATION – Elevated water temperature	Surface water temperatures exceed State/Federal standards and/or limit use for intended purposes					
WILDLIFE & HABITAT						
INADEQUATE HABITAT FOR FISH AND WILDLIFE – Habitat degradation	Quantity, quality or connectivity of food, cover, space, shelter and/or water is inadequate to meet requirements of identified fish, wildlife or invertebrate species					
BIODIVERSITY	The number of different species represented by species richness and species evenness.					
INVASIVE SPECIES	Non-native species that have a tendency to outcompete with native species and spread to a degree believed to cause damage to the environment, human economy or human health.					
INDICATOR SPECIES	Any biological species that defines a trait or characteristic of the environment. For an example, a species may delineate an ecoregion or indicate an environmental condition such as a disease outbreak, pollution, species competition or climate change. This includes: pollinators, migratory species, intolerant species, endangered and threatened species, and other keystone species.					
DEGRADED PLANT CONDITION – Undesirable plant productivity and health	Plant productivity, vigor and/or quality negatively impacts other resources or does not meet yield potential due to improper fertility, management or plants not adapted to site This includes addressing pollinators and beneficial insects.					
DEGRADED PLANT CONDITION – Inadequate structure and composition	Plant communities have insufficient composition and structure to achieve ecological functions and management objectives This includes degradation of wetland habitat, targeted ecosystems, or unique plant communities.					
DEGRADED PLANT CONDITION – Excessive plant pest pressure	Excessive pest damage to plants including that from undesired plants, diseases, animals, soil borne pathogens, and nematodes This concern addresses invasive plant, animal and insect species					
DEGRADED PLANT CONDITION– Wildfire hazard, excessive biomass accumulation	The kinds and amounts of fuel loadings - plant biomass - create wildfire hazards that pose risks to human safety, structures, plants, animals, and air resources					
---	--	--	--	--	--	--
Climate Change Mitigation						
INEFFICIENT ENERGY USE – Equipment and facilities	Inefficient use of energy in the Farm Operation increases dependence on non-renewable energy sources that can be addressed through improved energy efficiency and the use of on-farm renewable energy sources. As an example, this concern addresses inefficient energy use in pumping plants, on-farm processing, drying and storage.					
INEFFICIENT ENERGY USE – Farming/ranching practices and field operations	Inefficient use of energy in field operations increases dependence on non-renewable energy sources that can be addressed through improved efficiency and the use of on-farm renewable energy sources.					
AIR POLLUTION REDUCTION - Emissions of Particulate Matter - PM - and PM Precursors	Direct emissions of particulate matter - dust and smoke -, as well as the formation of fine particulate matter in the atmosphere from other agricultural emissions - ammonia, NOx, and VOCs - cause multiple environmental impacts, such as: 1) The unintended movement of particulate matter - typically dust or smoke - results in safety or nuisance visibility restriction, 2) The unintended movement of particulate matter and/or chemical droplets results in unwanted deposits on surfaces, 3) Increased atmospheric concentrations of particulate matter can impact human and animal health and degrade regional visibility.					
AIR POLLUTION REDUCTION - Emissions of Greenhouse Gases - GHGs -	Emissions increase atmospheric concentrations of greenhouse gases.					
AIR POLLUTION REDUCTION - Emissions of Ozone Precursors	Emissions of ozone precursors - NOx and VOCs - resulting in formation of ground- level ozone that cause negative impacts to plants and animals.					
AIR POLLUTION REDUCTION - Objectionable odors	Emissions of odorous compounds - VOCs, ammonia and odorous sulfur compounds - cause nuisance conditions					

FLOOD CONTROL	Ability to reduce or prevent the detrimental effects of flood waters or high water.
RESILIENCE	The capacity for a socio-ecological system to: (1) absorb stresses and maintain function in the face of external stresses imposed upon it by climate change and (2) adapt, reorganize, and evolve into more desirable configurations that improve the sustainability of the system, leaving it better prepared for future climate change impacts.
Landowner Costs	
PRICE	Price of implementation, including capital costs and other associated costs.
INCENTIVE	Incentive programs, such as WRP, CRP, EQIP.
CROP YIELD	Amount of land available for crops or any other factor that would affect crop yield.

Appendix 2. Descriptions of Conservation Practices

2.1 Buffer Strips

Buffer Strips are land sections along field borders or on the flanks of wetlands or waterbodies where certain types of vegetation are grown to slow and filter overland water flows. Buffer strips are considered a Best Management Practice by state and federal conservation agencies for their simplicity and effectiveness in buffering aquatic ecosystems from surface runoff (Mayer et al., 2005). Basic types of buffer strips include riparian buffers, grassed waterways, filter strips, and contour grass strips. Riparian buffers are lands adjacent to streams or wetlands and planted with trees, shrubs and grasses; filter strips are lands that separate crop fields from streams and exclude trees; grassed waterways are drainage pathways within fields that consist of mowed grass; and contour grass strips occur within fields on sloped areas (Clark and Reeder, 2007).

Buffer strips provide many important benefits to water quality by reducing sediment, nutrient, chemical, and pathogen inputs from surface water runoff into waterways. Water runoff and contaminants are slowed by vegetation along the strip, which then trap sediments and use incoming nutrients as food. Slowing runoff also increases the amount of time that nutrients

remain in the strip, allowing microbes in the soil to process and remove nutrients from surface and subsurface flows.

Buffer strips mainly function to improve water quality, but also can provide wildlife habitat or food. Benefits to wildlife are largely dependent on the width, vegetation types, and relative distance to larger habitat areas (Clark and Reeder, 2007). Buffer strips help increase local biodiversity by creating limited habitats and providing wildlife corridors, provided strips are located near existing habitat or connected to a larger network of conservation areas. Wider strips are prefered, as narrow strips may not offer the shelter or habitat preferred by wildlife (Mayer et al., 2005). Buffer strips along streams and lakes benefit aquatic species by creating

shade to reduce water temperatures and improving water quality (ref). **Figure 2.2.1** Recommended conservation buffer strip width for different functions or uses (ISU).

The costs involved with buffer strips are installation and maintenance costs, and land use opportunity costs. The site-specific costs depend on the types of land used for buffer strips and type of buffer strips adopted. Placing buffer strips on marginal lands which consistently flood or have a high risk of erosion both reduces the landowner's opportunity cost, associated with not producing a cash crop on the land used for buffer strips, and improves the effectiveness of the practice. Three limitations may constrain the use of this conservation practice: a lack of landowner incentives, insufficient landowner awareness of the practices, and limited wildlife benefits. Additional government subsidies may be needed for encouraging participation. Increasing buffer sizes or connecting the buffer strips to existing conservation lands can help increase wildlife benefits.

2.2 Wetland Restoration and Reforestation

Wetland restoration and management practices involve the construction and maintenance of wetlands, which are defined as land "permanently or seasonally saturated and/or ponded with water" (NWI). The wetland types within the Mississippi River Basin include: "emergent marshes, sedge meadows, fens, scrub-shrub wetlands, and forested wetlands (floodplain and flatwood forests)" (reference).

Wetland restoration and management practices primarily benefit wildlife conservation and improve the ecological services provided in an area. Restoring wetlands allows these areas to improve water quality by filtering, impounding, and eventually removing contaminants from flowing waters. For wildlife, it increases local biodiversity, creates habitats, and provides corridors. Restoring and managing wetlands also benefit aquatic species by creating shade to reduce water temperature and providing improved water quality. Wetlands increase the heterogeneity of the landscape, resulting in increased biodiversity, healthy native populations, and reduced invasive species. Ecological services provided by wetlands include flood control, improved water quality, and recharge of groundwater. Wetlands also function as important carbon sinks.

The costs involved with wetland restoration and management are installation and maintenance costs, and land use opportunity costs. The site-specific costs depend on the types and locations of wetlands, the degree of degradation, and available restoration and management technologies. Using historical wetland sites as restoration sites is highly recommended, as the soils and geological formations are already suited for a wetland site (ref).

Several limitations may constrain the use of this conservation practice, including a shortage of interested professionals such as foresters and land managers, a variety of wetland types which may be considered, a scarcity of financial incentives to cover initial costs, and limited planning and mapping abilities over large areas.

2.3 Cover Crops

Definition

Cover crops are plants that are grown during the non-cash crop growing season. Cover crops can be harvested as cash-crops, or strictly grown as cover crops (ETPBR LCC 2016).

Benefits

Benefits vary, depending on which plants are used, but they all provide root biomass, which helps to keep soil, water, and nutrients on the land by anchoring the soil and absorbing water. Many cover crops are useful for weed control and outcompeting invasive species. Some cover crops, such as wheat, have the potential to absorb excess nitrogen and phosphorus from agricultural fields, which greatly reduces the amounts of those nutrients entering the waterways and eventually contributing to the hypoxia problems downstream. Some crops, including wheat, can also provide vital nesting habitat for several species of birds (ETPBR LCC 2016).

Cover crops are beneficial to landowners because they can be grown as a cash crop and, if managed appropriately, can recycle the majority of the nutrients left on the soil from the previous growing season and make these nutrients biologically available for the next growing season. This reduces the amount of fertilizer application necessary for a typical cash crop. Most cover crops more than pay for themselves by increasing yields of the succeeding cash crop and by improving soil and water quality. Regarding climate change, cover crops vary greatly and have differing tolerances, allowing this overall practice to remain robust under the uncertainty of future conditions under climate change (ETPBR LCC 2016).

Although there are several research articles comparing various cover crops and their ability to outcompete invasive species (Perry & Galatowitsch 2003) (Perry et al., 2009), there is much less information available to help quantify the value cover crops add to habitat and wildlife. Preferable cover crop varieties are known to provide food, shelter, and some habitat to wildlife. Future research would be useful in determining which cover crops provide the most habitat value.

Limitations

Cover crops can be detrimental to the landscape if they are tilled or removed with herbicides after their growing season. Implementing no-till, integrated pest management, and comprehensive nutrient management in concert with cover crops will help to maximize conservation benefits. There may also be risks to the landowners if cover crops create a delay in planting of cash crops (ETPBR LCC 2016).

2.4 Drainage Water Management

Definition

Drainage water management refers to the integration of drainage control structures into existing agricultural drainage systems in order to allow farmers to easily retain or drain water out of their fields (Figures 2.4.1 and 2.4.2) (ETPBR LCC 2016).

Figure 2.4.1 Drainage water management systems can be manipulated by farmers to control water level on the landscape (from farms.com).

Figure 2.4.2 Drainage water management being used to retain water on the landscape, creating temporary wetlands (from <u>http://www.miwea.org/docs/6B%20Tom%20VanWagner%20</u> Watershed%20Summit.pdf).

Benefits

If used correctly, farmers can prevent water and excess nutrients from leaving their tile lines and polluting larger streams and tributaries. Drainage water management is expected to reduce nitrate and phosphate loads up to 50% or more. Drainage water management could also provide crucial stop-over and staging habitat for migratory birds and waterfowl. Studies have shown an increase in crop yield associated with drainage water management. This technology could also help ameliorate unpredictable precipitation from climate change, especially flooding and drought (ETPBR LCC 2016).

Limitations

Limitations include expensive installation, limitations on where it can be implemented due to slope and configuration of drainage tiles, and the degree of difficulty for farmers to manage it properly. The NRCS has developed maps, showing the suitability of cropland for drainage water management in each county (Figure 2.4.3). The criteria used to determine suitability are soil composition, water table, and slope. Based on the maps, the Illinois side of the Lower Wabash will be much more suited to drainage water management than Indiana (NRCS 2011).

Figure 2.4.3 Suitability of cropland for drainage water management in Lower Wabash counties, based on soil composition, slope, and water table (NRCS 2011).

2.5 Two-Stage Ditches

Definition

A two-stage ditch is a 2-tiered ditch with ledges in a trapezoidal shape, as opposed to the traditional rounded singular ditch (Figure 2.5.1). These ditches are used to help drain agricultural fields (ETPBR LCC 2016).

Benefits

Two-stage ditches are more stable than traditional drainage ditches and also provide filtering benefits that can help to reduce the amount of nutrients and sediment entering larger streams and rivers (ETPBR LCC 2016). By reducing stream nutrient and sediment loads and restoring some of the natural hydrology, the two-stage ditch benefits several species of fish (ETPBR LCC 2016). Furthermore, the addition of ledges and the creation of the floodplain inherent to the two-stage ditch design results in increased habitat for migratory shorebirds and waterfowl (ETPBR LCC 2016). Two-stage ditches are covered by the Environmental Quality Incentives Program (EQIP) and increases soil stability and health which could translate to higher crop yields. Additionally, The Nature Conservancy (TNC) has received funding from the Indiana Department of Environmental Management (IDEM) for a wide-scale implementation of two-stage ditches along the Wabash River Watershed (TNC 2016). This may be a good opportunity to study and quantify the value these ditches provide for habitat and wildlife. Regarding climate change, they are more resilient to heavy flow conditions than traditional ditches (ETPBR LCC 2016).

Limitations

Two-stage ditches can reduce available land for crop production. Typically, installation of two-stage ditches is very expensive, requiring significant earth moving and cooperation of multiple landowners along the length of the stream. However, streams may also naturally develop a deeper central channel with side shelves if allowed to revert to this configuration rather than periodically dredging the ditch (ETPBR LCC 2016).

2.6 Upper Floodplain Hydrologic Restoration

Lower floodplain water diversion refers to the large-scale practice of diverting water or sediments from a large river into lower coastal floodplains. Gates or water siphons then regulate the flow through the diversion. Providing a freshwater path from the Mississippi River to its

adjacent floodplains is anticipated to reverse coastal wetland loss in Louisiana by reducing the impact of saltwater intrusion and reintroducing vital nutrients to nutrient starved wetlands (Maloney, 2014). Freshwater and sediment diversions are both recommended, as freshwater diversions reduce wetland salinity and sediment diversions increase nutrient loads to wetland plants. These water diversions have the added benefit of directly reducing the nutrient load flowing into the Gulf of Mexico via the Mississippi River, as well as allowing wetlands to store and filter floodwater before releasing it to the Gulf.

Lower floodplain water diversion refers specifically to diversions of a freshwater river to adjacent coastal floodplains, but the NRCS conservation practice 'diversion' (code 362, 348) may be applied to leveed sections of the Wabash River to redirect flood waters and reduce nutrient loads in the river. Providing outlets for flood waters will help reduce the impact of predicted increased storm events under climate change and reduce subsequent downstream flooding. As river levees tend to be more concentrated around populated areas, managing water diversions near these towns and cities will help reduce flooding and protect rural farmlands along the river.

Costs associated with water diversion include the construction and maintenance of gates or pumps at the point of diversion. Wetlands serviced or created by these projects will operate under natural processes and be self-sufficient. Locations for these wetlands will need to be acquired or have access permitted. Important considerations and possible limitations of water diversion include thoughtful placement of diversion points with respect to populated areas and available land space.

Appendix 3. Wildlife

Appendix 3.1 Rare Species Distribution in Lower Wabash

In all the 859 species in Indiana, more than 100 of these species are listed as "rare species" in Indiana which attracts special attention. According to 2015 Wildlife Science Report (Indian Department of Natural Resources, 2015), Indiana Rare Species include two kinds of animal species: endangered species and special concern species. Endangered species are defined as "Any animal species whose prospect for survival or recruitment within Indiana are in jeopardy and are in danger of disappearing from the state" (IDNR, 2015). State endangered species are not always consistent with federal endangered species. It works as complements for species protection according to Indiana's condition, containing more species than USWFS listed. Special concern species are defined as "Any animal species requiring monitoring because of known or suspected limited abundance or distribution, or because of recent change in federal status or required habitat" (IDNR, 2015). Endangered species in Indiana are legally protected by Indiana Nongaming and Endangered Species Conservation Act (IC 14-23-34). But special concern species are not protected by this law.

Since gaming species are permitted for licensed hunting, most of them are not included as "rare" species. But in 2015, two gaming birds also added into the list as special concern species because of population declining in Indiana state.

We organized a list with all these "rare species", and several species not included as "rare" but with specially sections in Indiana Department of Natural Resources official site, the data are from Indiana Department of Natural Resources official site (http://www.in.gov/dnr/fishwild/2356.htm).

Multiple sources are used to confirm the distribution areas of these species. For keeping the data uniform, the distribution information are mainly based on USGS National Gap Analysis Program (GAP) -- Core Science Analytics and Synthesis (<u>http://gapanalysis.usgs.gov/gap-analysis/</u>). Several other datasets are chosen as complements only if the Gap database not containing/not completing the species information. By analyzed the overlap of species distributions with the 14 counties in Lower Wabash Areas: Clay, Daviess, Dubois, Gibson, Greene, Knox, Martin, Orange, Pike, Posey, Sullivan, Vanderburgh, Vigo, and Warrick, species appeared in Lower Wabash counties are chosen for further analysis.

The "rare" species distribution information is listed in below: totally 7 categories (invasive species included).

"Special Protected (SP), Special Concern (SC), State Endangered (SE), Federal Threatened (FT), Federal Endangered (FE), Federal Candidate (FC), Exotic/introduced (X)" (<u>DNR</u>).

	ORDE	FAMILY	GENU	SPECIE	СОММО	STATU	Distribut	Distributi	Distribution	Link
--	------	--------	------	--------	-------	-------	-----------	------------	--------------	------

1. Amphibians: (done)

R		S	S	N NAME	S*	ed in Lower Wabash	on data sources	in Lower Wabash counties	
Caudat a	Cryptobr anchidae	Hellben ders	Cryptobr anchus alleganie nsis	Hellbende r	SE	Yes	GAP	ALL	http://gapanalysis. usgs.gov/species/d ata/download/#cho ose (then download range)
	Proteidae	Mudpu ppies and Waterd ogs	Necturus maculos us	Common Mudpupp y	SC	Yes	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT Species Amphibians/amud px/MapServer
	Ambysto matidae	Mole Salama nders	Ambysto ma laterale	Blue- spotted Salamand er	SC	No	other sources (berkeley mapper from UC Berkeley)		http://berkeleymap per.berkeley.edu/in dex.html?tabfile=h ttp://amphibiaweb. org/tmpfiles/62857 6&configfile=http: //amphibiaweb.org /tmpfiles/bm_confi g_576253.xml&Vi ewResults=tab&so urcename=Amphib iaWeb+Species+M ap:+Ambystoma+l aterale&hibia web=true&label=1 &opacity=0.50&p ointDisplay=point Markers
			Ambysto ma talpoide um	Mole Salamand er	SE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Amphibians/amosa x/MapServer
			Ambysto ma barbouri	Streamsid e Salamand er	SC	Yes	other sources (berkeley mapper from UC Berkeley)	Dubois	http://berkeleymap per.berkeley.edu/in dex.html?tabfile=h ttp://amphibiaweb. org/tmpfiles/35235 6&configfile=http: //amphibiaweb.org /tmpfiles/bm_confi

									g_137843.xml&Vi ewResults=tab&so urcename=Amphib iaWeb+Species+M ap:+Ambystoma+b arbouri&hibia web=true&label=1 &opacity=0.50&p ointDisplay=point Markers (distribution)
			Hemidac tylium scutatum	Four-toed Salamand er	SC	Yes	GAP	Greene, Sullivan, Daviess, Martin, Orange	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Amphibians/aftsax /MapServer
			Pseudotr iton ruber	Red Salamand er	SE	No	other sources (berkeley mapper from UC Berkeley)		http://amphibiawe b.org/cgi/amphib query?where- genus=Pseudotrito n&where- species=ruber
			Aneides aeneus	Green Salamand er	SE	Yes	other sources (berkeley mapper from UC Berkeley)	Orange	http://amphibiawe b.org/species/3934
Anura	Hylidae	Treefro gs	Acris crepitans	Northern Cricket Frog	SC	Yes	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Amphibians/ancfrx /MapServer:
			Hyla chrysosc elis	Cope's Gray Treefrog		Yes	IDNR; other sources (berkeley mapper from UC Berkeley)	ALL	http://www.in.gov/ dnr/fishwild/3341. htm
			Hyla versicolo r	Eastern Gray Treefrog		?		Co. H. versicolor is found in	

							northern Indiana, not known south of Indy.	
		Hyla cinerea	Green Treefrog		Yes	IDNR	All	http://www.in.gov/ dnr/fishwild/3336. htm
		Pseudac ris triseriata	Western Chorus Frog		Yes	IDNR	All	http://www.in.gov/ dnr/fishwild/3332. htm
		Pseudac ris crucifer	Spring Peeper		Yes	IDNR	All	http://www.in.gov/ dnr/fishwild/3330. htm
Ranidae	True Frogs	Lithobat es areolatu s	Crawfish Frog	SE	Yes	IDNR	? Southwester n and west- central Indiana. Isolated population in the southeast region. Very uncommon. Endangered in Indiana.	http://www.in.gov/ dnr/fishwild/3342. htm
		Lithobat es pipiens	Northern Leopard Frog	SC	NA	GAP		http://www.in.gov/ dnr/fishwild/3335. htm
		Lithobat es blairi	Plains Leopard Frog (Plain's Leopard Frog)	SE	?	IDNR	? Poorly known. Species of special concern.	http://www.in.gov/ dnr/fishwild/3334. htm
		Lithobat es catesbei anus	American Bullfrog		Yes	IDNR	All	http://www.in.gov/ dnr/fishwild/3344. htm
		Lithobat es	Green Frog		Yes	IDNR	All	http://www.in.gov/ dnr/fishwild/3337.

		clamitan s					<u>htm</u>
		Lithobat es palustris	Pickeral Frog	NA	IDNR	Statewide except northwester n prairie and lower Wabash valley. Not common.	http://www.in.gov/ dnr/fishwild/3333. htm
		Lithobat es sphenoce phalus	Southern Leopard Frog	Yes	IDNR	West- central and southern Indiana.	http://www.in.gov/ dnr/fishwild/3331. htm
		Lithobat es sylvaticu s	Wood Frog	Yes	GAP	All	http://www.in.gov/ dnr/fishwild/3329. htm https://www.arcgis .com/home/webma p/viewer.html?url= https%3A%2F%2 Fgis1.usgs.gov%2 Farcgis%2Frest%2 Fservices%2FNAT _Species_Amphibi ans%2Fawofrx%2 FMapServer&sour ce=sd
Bufonida e	True Toads	Anaxyru s america nus	American Toad	NA	IDNR		http://www.in.gov/ dnr/fishwild/3345. htm
		Anaxyru s fowleri	Fowler's Toad	Yes	IDNR	All	http://www.in.gov/ dnr/fishwild/3338. htm
Scaphiop odidae	North Americ an Spadef oots	Scaphiop us holbrook ii	Eastern Spadefoot	Yes	IDNR	Southern third of state. Occur in flood plains of lower Wabash and	http://www.in.gov/ dnr/fishwild/3339. htm

			White rivers and in barrens or relic prairies of Harrison Co. Species of Special	
			Concern.	

2. Birds: (done)

ORDE R	FAMIL Y		SPECIE S	CO MM ON NA ME	STAT US*	Distrib uted in Lower Wabas h	Distribution data sources	Distribut ion in Lower Wabash counties	Link (disntributiom)
Anserif ormes	Anatidae	Waterfowl: Ducks, Geese, and Swans	Cygnus buccinat or	Tru mpet er Swa n	SE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/btrusx/MapS erver
Pelecan iformes	Ardeidae	Bitterns, Herons, and Egrets	Botaurus lentigino sus	Ame rican Bitte rn	SE	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bambix/Map Server
			Ixobrych us exilis	Leas t Bitte rn	SE	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/blebix/MapS erver
			Ardea alba	Grea t Egre t	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bgregx/Map Server
			Nycticor ax	Blac k- crow ned Nigh t- Hero	SE	Yes- Summe r & Year Round	GAP	Green, Sullvan, Clay, Owen- summer; other places-	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bbcnhx/Map Server

				n				year round	
			Nyctanas sa violacea	Yell ow- crow ned Nigh t- Hero n	SE	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bycnhx/Map Server
Accipit riforme s	Pandioni dae Osprey	Osprey	Pandion haliaetus	Ospr ey	SE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bosprx/Map Server
	Accipitri dae	Hawks, Eagles, and Kites	Ictinia mississip piensis	Miss issip pi Kite	SC	Yes- Summe r	GAP	Green, Sullivan, Lawranc e, Martin, Daviess, Knox, Gibson, Pike, Dubios, Warrick	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bmikix/Map Server
			Circus cyaneus	Nort hern Harr ier	SE	Yes- Winter & Year Round	GAP	Green, Sullivan, Clay, Owen- year round;	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bnohax/Map Server
			Accipiter striatus	Shar p- shin ned Haw k	SC	Yes- Winter & Year Round	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bsshax/Map Server
			Haliaeet us leucocep halus	Bald Eagl e	SC	Yes- Winter & Year Round	GAP	Martin, Dubios, Orange - year rounde;	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bbaeax/Map Server

								other places- winter	
			Buteo lineatus	Red- shou ldere d Haw k	SC	Yes- Year Round	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/brshax/Map Server
			Buteo platypter us	Broa d- wing ed Haw k	SC	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bbwhax/Map Server
Gruifor mes	Rallidae	Rails, Gallinules, and Coots	Laterallu s jamaicen sis	Blac k Rail	SE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bblrax/MapS erver
			Rallus elegans	King Rail	SE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bkirax/MapS erver
			Rallus limicola	Virg inia Rail	SE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bvirax/MapS erver
			Gallinul a galeata	Com mon Galli nule	SE	Yes- Summe r	other sources (Birds of North America from Cornell Lab)	ALL	https://birdsna.org/ Species- Account/bna/speci es/comgal1/introdu ction;JSESSIONI D=A013C173B1A C650C0E0514242 92E4018
	Gruidae	Cranes	Grus canaden sis	Sand hill Cran e	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_

									Birds/bsacrx/MapS erver
			Grus america na	Who opin g Cran e	SE, FE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bwhcrx/Map Server
Charadr iiforme s	Charadri idae	Plovers	Pluvialis dominica	Ame rican Gold en- Plov er	SC	Yes- Summe r	GAP	ALL	http://gapanalysis. usgs.gov/species/d ata/download/# (download range)
			Charadri us melodus	Pipi ng Plov er	SE, FE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bpiplx/MapS erver
	Scolopac idae	Sandpipers and Phalaropes	Tringa solitaria	Solit ary Sand pipe r	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bsosax/Map Server
			Tringa melanole uca	Grea ter Yell owle gs	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bgryex/Map Server
			Bartrami a longicau da	Upla nd Sand pipe r	SE	Yes- Summe r	GAP	Clay	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bupsax/Map Server
			Arenaria interpres	Rud dy Turn ston e	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/brutux/MapS erver
			Tryngite s subrufic	Buff - brea	SC	No	GAP		http://gapanalysis. usgs.gov/species/d ata/download/#

			ollis	sted Sand pipe r					(download range)
			Limnodr omus griseus	Shor t- bille d Dow itche r	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bsbdox/Map Server
			Phalaro pus tricolor	Wils on's Phal arop e	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bwiphx/Map Server
			Calidris canutus rufa	Rufa Red Knot	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/breknx/Map Server
	Laridae	Gulls, Terns, and Skimmers	Sternula antillaru m	Leas t Tern	SE, FE	Yes- Summe r	GAP	Posey	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bletea/MapS erver
			Chlidoni as niger	Blac k Tern	SE	Yes- Summe r	GAP	Martin, Dubios, Pike, Owen, Green, Orange, Crawfor d, Spencer, Perry,	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bbltex/MapS erver
Strigifo rmes	Tytonida e	Barn Owls	Tyto alba	Barn Owl	SE	Yes- year round	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bbanox/Map Server

	Strigidae	Typical Owls	Asio flammeu s	Shor t- eare d Owl	SE	Yes- Winter & Year Round	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bseowx/Map Server
Caprim ulgifor mes	Caprimu Igidae	Nighthawks and Nightjars	Chordeil es minor	Com mon Nigh thaw k	SC	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bconix/Map Server
			Antrosto mus vociferus	East ern Whi p- poor -will	SC	Yes- year round	other sources (Birds of North America from Cornell Lab)	ALL	https://birdsna.org/ Species- Account/bna/speci es/whip- p1/introduction
Falconi formes	Falconid ae	Falcons and Caracaras	Falco peregrin us	Pere grin e Falc on	SC	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bpefax/Map Server
Passerif ormes	Laniidae	Shrikes	Lanius ludovicia nus	Log gerh ead Shri ke	SE	Yes- Winter & Year Round	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bloshx/Map Server
	Troglody tidae	Wrens	Cistotho rus platensis	Sedg e Wre n	SE	Yes- Summe r	GAP	Green, Sullvan, Lawranc e, Martin, Daviess, Knox, Gibson, Pike, Posey	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bsewrx/Map Server
			Cistotho rus palustris	Mar sh Wre n	SE	No	GAP		https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bmawrx/Ma pServer

Parulida e	New World Warblers	Helmithe ros vermivor um	Wor m- eatin g War bler	SC	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bwewax/Ma pServer
		Vermivo ra chrysopt era	Gold en- wing ed War bler	SE	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bgwwax/Ma pServer
		Mniotilta varia	Blac k- and- whit e War bler	SC	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bbwwax/Ma pServer
Emberizi dae	Sparrows	Ammodr amus henslowi i	Hen slow 's Spar row	SE	Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bhespx/Map Server
Icteridae	Blackbirds and Orioles	Sturnella neglecta	Wes tern Mea dowl ark	SC	Yes- Winter	GAP	Posey, Gibson	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/bwemex/Ma pServer
		Xanthoc ephalus	Yell ow- head ed Blac kbir d	SE	No	GAP		http://gapanalysis. usgs.gov/species/d ata/download/# (download range)
Cardin alidae Tanag ers, Cardin als,		Piranga rubra	Sum mer Tana ger		Yes- Summe r	GAP	ALL	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species Birds/bsutax/MapS erver

	and Grosb eaks)								
Gallifor mes	Phasiani dae	Turkeys, grouse, pheasants, and partridges	Bonasa umbellus	Ruff ed Gro use	SC	Yes	GAP	Greene, Orange, Perry	https://gis1.usgs.go v/arcgis/rest/servic es/NAT_Species_ Birds/brugrx/Map Server

3. Fish: (Not done)

ORDER	FAMIL Y		SPECIES	COMMON NAME	STATUS *	Distribu ted in Lower Wabash	Distributio n data sources	Distribut ion in Lower Wabash counties	Link
Petromyz ontiforme s (Class Petromyz ontida)	Petromy zontidae	lampreys	Ichthyom yzon fossor	Northern Brook Lamprey	SE	No	NSE		http://explorer.natur eserve.org/servlet/ NatureServe?search Name=Ichthyomyz on+fossor+
Acipense riformes (Class Actinopte rygii)	Acipens eridae	sturgeons	Acipense r fulvescen s	Lake Sturgeon	SE	YES	NSE	Martin (18101), Porter (18127), Posey (18129)* ,, Vigo (18167)*	http://explorer.natur eserve.org/servlet/ NatureServe?source Template=tabular_r eport.wmt&loadTe mplate=species_Rp tComprehensive.w mt&selectedReport =RptComprehensiv e.wmt&summaryVi ew=tabular_report. wmt&elKey=10423 2&paging=home&s ave=true&startInde x=1&nextStartInde x=1&reset=false&o ffPageSelectedElKe y=104232&offPage SelectedElType=sp ecies&offPageYes No=true&post_proc esses=&radiobutton

							=radiobutton&selec tedIndexes=104232 &selectedIndexes= 777781&selectedIn dexes=777776&sel ectedIndexes=7777 73&selectedIndexe s=798155&selected Indexes=798164&s electedIndexes=798 167&selectedIndex es=798173&selecte dIndexes=798177
Lepisoste iformes (Class Actinopte rygii)	Lepisost eidae	gars	Atractost eus spatula	Alligator Gar	EX		
Clupeifor mes (Class Actinopte rygii)	Clupeid ae	herrings	Alosa alabama e	Alabama Shad	EX		
Cyprinifo rmes (Class Actinopte rygii)	Cyprinid ae	carps and minnows	Clinosto mus elongatu s	Redside Dace	SE		
			Hybopsis amnis	Pallid Shiner	SE		
			Notropis anogenus	Pugnose Shiner	SC		
			Notropis ariommu s	Popeye Shiner	EX		
			Notropis dorsalis	Bigmouth Shiner	SC		
			Rhinicht hys cataracta e	Longnose Dace	SC		

	Catosto midae	suckers	Catostom us	Longnose Sucker	SC		
			Moxosto ma lacerum	Harelip Sucker	EX		
			Moxosto ma valencien nesi	Greater Redhorse	SE		
Silurifor mes (Class Actinopte rygii)	Ictalurid ae	North American catfishes	Noturus stigmosu s Northern Madtom	Northern Madtom	SE		
Salmonif ormes (Class Actinopte rygii)	Salmoni dae	trouts and salmons	Coregon us artedi	Cisco	SC		
			Coregon us clupeafor mis	Lake Whitefish	SC		
			Coregon us nigripinn is	Blackfin Cisco	EX		
			Coregon us reighardi	Shortnose Cisco	EX		
			Coregon us zenithicu s	Shortjaw Cisco	EX		
Percopsif ormes (Class Actinopte rygii)	Percopsi dae	trout- perches	Percopsi s omiscom aycus	Trout-perch	SC		
	Amblyo	cavefishes	Amblyop	Hoosier	SE		

	psidae		sis hoosieri	Cavefish			
			Typhlicht hys subterra neus	Southern Cavefish	EX		
Scorpaeni formes (Class Actinopte rygii)	Cottidae	sculpins	Cottus cognatus	Slimy Sculpin	SC		
Perciform es (Class Actinopte rygii)	Centrarc hidae	sunfishes	Lepomis symmetri cus	Bantam Sunfish	SE		
	Percidae	perches and darters	Ammocry pta clara	Western Sand Darter	SC		
			Crystalla ria asprella	Crystal Darter	EX		
			Etheosto ma maculatu m	Spotted Darter	SC		
			Etheosto ma proeliare	Cypress Darter	SC		
			Etheosto ma tippecan oe	Tippecanoe Darter	SC		
			Etheosto ma variatum	Variegate Darter	SE		
			Percina copeland i	Channel Darter	SE		
			Percina evides	Gilt Darter	SE		

		Percina uranidea	Stargazing Darter	EX		
		Percina vigil	Saddleback Darter	EX		
Elassom atidae	pygmy sunfishes	Elassom a zonatum	Banded Pygmy Sunfish	SC		

4. Fresh Mussels: (Not done)

ORDER	FAMILY	GENUS	SPECIES	COMMO N NAME	STAT US*	Distribute d in Lower Wabash	Distributi on data sources	Distribution in Lower Wabash counties	Link
Unionoid a	Margariti feridae	Cumberlandia	monodonta s	pectaclec ase	EX, FE				
	Unionida e	Cyprogenia	stegaria	fanshell	FE				
		Epioblasma	flexuosa	leafshell	EX				
		Epioblasma	obliquata	catspaw					http://exp lorer.natu <u>reserve.o</u> rg/servlet /NatureS erve?sear chName= obliquata +obliquat a+
		Epioblasma	obliquata perobliqua	white catspaw	FE				
		Epioblasma	personata	round combshel l	EX				
		Epioblasma	propinqua	Tennesse e riffleshell	EX				
		Epioblasma	sampsonii	Wabash	EX				

		riffleshell			
Epioblasma	torulosa rangiana	northern riffleshell	FE		
Epioblasma	torulosa	tubercled blossom	FE		
Epioblasma	triquetra	snuffbox	FE		
Fusconaia	subrotunda	longsolid	SE		
Hemistena	lata	cracking pearlymu ssel	EX, FE		
Lampsilis	abrupta	pink mucket	FE		
Lampsilis	fasciola	wavyraye d lampmus sel	SC		http://ww w.in.gov/ dnr/fishw ild/8685. htm
Leptodea	leptodon	scaleshell	EX, FE		
Obovaria	retusa	ring pink	EX, FE		
Obovaria	subrotunda	round hickoryn ut	SE		
Plethobasus	cicatricosus	white wartybac k	FE		
Plethobasus	cooperianus	orangefo ot pimpleba ck	FE		
Plethobasus	cyphyus	sheepnos e	FE		
Pleurobema	clava	clubshell	FE		
Pleurobema	cordatum	Ohio pigtoe	SC		
Pleurobema	plenum	rough	FE		

		pigtoe			
Pleurobema	rubrum	pyramid pigtoe	SE		
Potamilus	capax	fat pocketbo ok	FE		
Ptychobranch us	fasciolaris	kidneysh ell	SC		
Quadrula	cylindrica	cylindrica rabbitsfo ot	SE, FT		
Quadrula	fragosa	winged mapleleaf	EX, FE		
Simpsonaias	ambigua	salamand er mussel	SC		
Toxolasma	lividus	purple lilliput	SC		
Venustaconch a	ellipsiformis	ellipse	SC		
Villosa	fabalis	rayed bean	FE		
Villosa	lienosa	little spectacle case	SC		

5. Mammals: (Not done)

ORDER	FAMILY		SPECIES	COMMO N NAME	STAT US*	Distribute d in Lower Wabash	Distributi on data sources	Distribution in Lower Wabash counties	Link
Soricomo rpha	Soricidae	shrews	Sorex fumeus	Smoky shrew	SC	Yes	GAP	Orange, Lawrance, Green	https://gis1 .usgs.gov/a rcgis/rest/s ervices/NA T_Species Mammals /msmshx/

							<u>MapServer</u>
			Sorex hoyi	Pygmy shrew	SC		
	Talpidae	moles	Condylura cristata	Star- nosed mole	SC		
Chiropter a	Vespertili onidae	evening and vesper bats	Myotis austroriparius	Southeast ern myotis	SC		
			Myotis grisescens	Gray myotis	FE, SE		
			Myotis leibii	Eastern small- footed myotis	SC		
			Myotis lucifugus	Little brown myotis	SC		
			Myotis septentrionalis	Northern long- eared myotis	SC		
			Myotis sodalis	Indiana myotis	FE, SE		
			Lasionycteris noctivagans	Silver- haired bat	SC		
			Perimyotis subflavus	Tri- colored bat	SC		
			Nycticeius humeralis	Evening bat	SE		
			Lasiurus borealis	Red bat	SC		
			Lasiurus cinereus	Hoary bat	SC		
			Corynorhinus	Rafinesq	SC		

			rafinesquii	ue's big- eared bat			
Lagomor pha	Leporida e	rabbits and hares	Sylvilagus aquaticus	Swamp rabbit	SE		
Rodentia	Sciuridae	squirrels	Spermophilus franklinii	Franklin's ground squirrel	SE		
	Geomyid ea	pocket gophers	Geomys bursarius	Plains pocket gophers	SC		
	Cricetida e	New World rats, mice, voles	Neotoma magister	Alleghen y woodrat	SE		http://www .in.gov/dnr /fishwild/3 385.htm
Carnivora	Mustelid ae	weasels, badgers, otters	Mustela nivalis	Least weasel	SC		
			Taxidea taxus	Badger	SC		http://www .in.gov/dnr /fishwild/3 384.htm
				Black Bear	Listed in IDNR Web		http://www .in.gov/dnr /fishwild/8 500.htm
				Bobcat	Listed in IDNR Web		http://www .in.gov/dnr /fishwild/3 380.htm
				Coyote	Listed in IDNR Web		
				Mountain Lion (Cougar, puma, catamoun t, panther)	Listed in IDNR Web		

Bats Lister	d http://www
in	.in.gov/dnr
IDNE	R /fishwild/8
Web	450.htm

6. Reptiles: (Not done)

ORDER	FAMILY		SPECIES	COMMON NAME	STAT US*	Distribute d in Lower Wabash	Distribu tion data sources	Distribution in Lower Wabash counties	Link
Testudine s	Chelydrid ae	Snapping Turtles	Macrochelys temminckii	Alligator Snapping Turtle	SE				http://gis1. usgs.gov/a rcgis/rest/s ervices/N AT_Speci es_Reptile <u>s</u>
	Kinosterni dae	Mud and Musk Turtles	Kinosternon subrubrum	Eastern Mud Turtle	SE				
	Emydidae	Box and Water Turtles	Clemmys guttata	Spotted Turtle	SE				
			Emydoidea blandingii	Blanding's Turtle	SE				
			Terrapene carolina	Eastern Box Turtle	SP				
			Terrapene ornata	Ornate Box Turtle	SE				
			Pseudemys concinna	River Cooter	SE				
Squamata	Natricidae	Harmless Live-Bearing Snakes	Thamnophis butleri	Butler's Gartersnak e	SE				
			Thamnophis proximus	Western Ribbonsna ke	SC				
			Nerodia	Copper-	FT**,S				

		erythrogaster neglecta	bellied Watersnak e	Е		
		Clonophis kirtlandii	Kirtland's Snake	SE		
Colubrida e	Harmless Egg-Laying Snakes	Opheodrys aestivus	Rough Greensnak e	SC		
		Opheodrys vernalis	Smooth Greensnak e	SE		
		Cemophora coccinea	Scarletsnak e	SE		
		Tantilla coronata	Southeaster n Crowned Snake	SE		
Xenodonti dae	Robus Rear- Fanged Snakes	Farancia abacura	Red-bellied Mudsnake	SC		
Crotalidae	Pit Vipers	Agkistrodon piscivorus	Cottonmou th	SE		
		Sistrurus catenatus	Massasaug a	FC, SE		
		Crotalus horridus	Timber Rattlesnake	SE		

7. Invasive species: (Not done)

ORDER	FAMILY		SPECIES	COMMON NAME	STAT US*	Distribute d in Lower Wabash	Distribu tion data sources	Distribution in Lower Wabash counties	Link
birds									
Anserifor mes	Anatidae	Waterfowl: Ducks, Geese, and Swans	Cygnus olor	Mute Swan	Х	No	GAP		https://gis 1.usgs.go v/arcgis/re st/services

									/NAT_Sp ecies_Bir ds/bmusw x/MapSer ver
Galliforme s	Phasianid ae	Pheasants, Grouse, and Turkeys	Phasianus colchicus	Ring- necked Pheasant	X	Yes-year round	GAP	ALL	https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/brnepx/ MapServe r
Columbifo rmes	Columbid ae	Pigeons and Doves	Columba livia	Rock Pigeon	Х	Yes-year round	GAP	ALL	https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/bropix/ MapServe r
			Streptopelia decaocto	Eurasian Collared- Dove	X	No	GAP		https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/beucdx /MapServ er
Psittacifor mes	Psittacida e	Parakeets	Myiopsitta monachus	Monk Parakeet	X	No	GAP		https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/bmopa x/MapSer ver
Passerifor mes	Sturnidae	Starlings	Sturnus vulgaris	European Starling	Х	Yes-year round	GAP	ALL	https://gis 1.usgs.go v/arcgis/re

									st/services /NAT_Sp ecies_Bir ds/beustx/ MapServe r
	Fringillid ae	Finches	Haemorhous mexicanus	House Finch	X	Yes-year round	GAP	ALL	https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/bhofix/ MapServe r
	Passerida e	Old World Sparrows	Passer domesticus	House Sparrow	X	Yes-year round	GAP	ALL	https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/bhospx /MapServ er
			Passer montanus	Eurasian Tree Sparrow	X	No	GAP		https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/bhospx /MapServ er
fishs									https://gis 1.usgs.go v/arcgis/re st/services /NAT_Sp ecies_Bir ds/betspx/ MapServe r
Petromyzo ntiformes	Petromyz ontidae	lampreys	Petromyzon marinus	Sea Lamprey	Х				

(Class Petromyzo ntida)							
Clupeifor mes (Class Actinopter ygii)	Clupeida e	herrings	Alosa pseudohareng us	Alewife	X		
Cyprinifor mes (Class Actinopter ygii)	Cyprinida e	carps and minnows	Carassius auratus	Goldfish	X		
			Ctenopharyng odon idella	Grass Carp	X		
			Cyprinus carpio	Common Carp	X		
			Hypophthalmi chthys molitrix	Silver Carp	X		
			Hypophthalmi chthys nobilis	Bighead Carp	X		
			Scardinius erythrophthal mus	Rudd	Х		
	Cobitidae	loaches	Misgurnus anguillicaudat us	Oriental Weatherfis h	Х		
Siluriform es (Class Actinopter ygii)	Ictalurida e	North American catfishes	Ameiurus catus	White Catfish	X		
Osmerifor mes (Class Actinopter ygii)	Osmerida e	smelts	Osmerus mordax	Rainbow Smelt	X		
Salmonifo rmes (Class Actinopter ygii)	Salmonid ae	trouts and salmons	Oncorhynchus kisutch	Coho Salmon	X		
			Oncorhynchus	Rainbow	Х		

			mykiss	Trout			
			Oncorhynchus tshawytscha	Chinook Salmon	Х		
			Salmo salar	Atlantic Salmon	Х		
			Salmo trutta	Brown Trout	Х		
Mugilifor mes (Class Actinopter ygii)	Mugilida e	mullets	Mugil cephalus	Striped Mullet	Х		
			Menidia beryllina	Inland Silverside	Х		
Gasteroste iformes (Class Actinopter ygii)	Gasterost eidae	sticklebacks	Gasterosteus aculeatus	Threespine Stickleback	X		
Perciform es (Class Actinopter ygii)	Moronida e	temperate basses	Morone americana	White Perch	X		
			Morone saxatilis	Striped Bass	Х		
	Gobiidae	gobies	Neogobius melanostomus	Round Goby	Х		
Freshwate r Mussels							
Veneroida	Corbiculi dae	Corbicula	fluminea	Asian clam	Х		
	Dreisseni dae	Dreissena	polymorpha	zebra mussel	Х		
		Dreissena	bugensis	quagga mussel	Х		
Mammals							
Rodentia	Muridae	Old World	Rattus	Norway rat	Х		

	rats and rats	norvegicus				
		Mus musculus	House mouse	Х		

Туре	Comm on Name	SPECI ES	Habitat*	Breeding Habitat*	Diet*	Comm on Name	Functional Group
Bird	Blue- winged teal	Anas discors	Freshwater habitats include shallow ponds and seasonal and permanent wetlands. They often use both temporary and permanent ponds.	Breeding season, nesting habitat includes wetland areas within grasslands, such as shallow marshes, sloughs, flooded ditches, and temporary ponds.	Primary Diet: carnivore, herbivore; Animal Foods: insects, mollusks, aquatic crustaceans, other marine invertebrates; Plant Foods: leaves, seeds, grains, and nuts, algae, phytoplankton	Blue- winged teal	Migratory waterfowl
	Gadwal 1	Anas streper a	Marshes, sloughs, ponds, and small lakes with grasslands in both fresh and brackish water as breading habitats.	Meadows and upland habitats	Primary Diet: omnivore; Animal Foods: amphibians, fish, insects, terrestrial non-insect arthropods, mollusks Plant Foods: leaves, seeds, grains, and nuts, algae	Gadwal 1	Migratory waterfowl
	Wood duck	Aix sponsa	Same with teal and gadwall	Same with teal and gadwall	Same with teal and gadwall	Wood duck	Migratory waterfowl
	BeltedMegaceThe habitat ofTypkingfisrylebelted kingfishersencheralcyonrequires a body of1,20		Typically encompasses 800 to 1,200 meters of shoreline.	Primary Diet: carnivore; Animal Foods: birds, mammals, amphibians, reptiles, fish, insects, mollusks, aquatic crustaceans; Plant Foods: fruit	Belted kingfis her	Migratory waterfowl	
	Acadia n flycatc	Empido nax viresce	Wetlands: marsh, swamp; riparian	No-breeding here	Primary Diet: carnivore (insectivore);	Acadia n flycatc	Riparian bird

Appendix 3.2 Species Traits and Corresponding Functional Groups

	her	ns			Animal Foods: insects, terrestrial non-insect arthropods; Plant Foods: fruit	her	
	Americ an Golden -Plover	Pluviali s dominic a	Temperate, grassland areas	No-breeding here	Diet is influenced by local abundance of prey and temperatures. Breeding season: terrestial snails, insects and insect larvae, seeds, freshwater crustaceans, and insect larvae. Nonbreeding season: terrestial earthworms, insects and insect larvae, berries, seeds, and freshwater fish.	Americ an Golden -Plover	Shorebird
	Comm on pheasa nt	Phasia nus colchic us	Normally grassland and farmland habitats. Also appears in wetland (marsh) areas	In grass, shallow depression in the ground in a well covered area	Primary Diet: omnivore; Animal Foods: insects, terrestrial non-insect arthropods; Plant Foods: seeds, grains, and nuts, fruit	Comm on pheasa nt	Upland bird
	Quail		Same with pheasants	Same with pheasants	Same with pheasants	Quail	Upland bird
Fish	Blacksi de darter	Pleurob ema clava	In streams and small rivers, in well oxygenated riffles with coarse sand and gravel and little silt.		Primary Diet: planktivore, detritivore; Plant Foods: algae, phytoplankton; Other Foods: detritus, microbes; Foraging Behavior: filter-feeding	Blacksi de darter	Shalow water small herbivore fish
	Johnny darter	Etheost oma	Temperate, freshwater regions;	A stationary object of at least 25 cm in	Primary Diet: carnivore	Johnny darter	Slow water benthic

		nigrum	benthic, lakes and ponds, rivers and streams	diameter, such as a log, rock, or even trash under which spawning occurs.	(insectivore, eats non-insect arthropods); Animal Foods: insects, aquatic crustaceans		small carnivore fish
	iner	her s isolated portions of g topeka streams that begin s to evaporate during g dry weather. 0 Optimal pond s habitat tends to be s cool and clear with b		Spawn in pools over gravel and rubble substrates alongside green sunfish and orangespotted sunfish. Defend small territories, less than 0.25 m^2, near sunfish nests	Primary Diet: omnivore; Animal Foods: fish, insects, aquatic crustaceans; Plant Foods: seeds, grains, and nuts; Other Foods: detritus	Topeka shiner	Slow water small omnivore fish
Sc	culpin		Rivers, submarine canyons, kelp forests, and shallow littoral habitat types, such as tidepools		Primary Diet: carnivore, omnivore; Animal Foods: terrestrial vertebrates, amphibians, fish, insects, mollusks; Plant Foods: leaves, roots, and tubers	Sculpin	Flowing water benthic small omnivore fish
	ub	Semotil us atroma culatus	Require flowing water for spawning and are often found in small headwater creeks, small streams, and agricultural ditches over gravel and sand substrates.		Primary Diet: carnivore, omnivore; Animal Foods: terrestrial vertebrates, amphibians, fish, insects, mollusks; Plant Foods: leaves, roots, and tubers	Creek chub	Flowing water small omnivore fish
	shiner	Notropi s anogen us	Clear vegetated lakes as well as similar habitats in pools and runs of	Densely vegetated shallow water with a maximum depth of 2m	Primary Diet: carnivore (eats eggs, insectivore, vermivore),	Pugnos e shiner	Flowing water small omnivore fish

		low gradient streams and rivers. They are extremely intolerant to turbidity.		herbivore (algivore), omnivore (detritivore); Animal Foods: eggs, insects, terrestrial worms; Plant Foods: algae		
Small mouth bass	Micropt erus dolomie u	Cooler lakes and ponds, rivers and streamsrivers, with rocky or sandy substrates	Small, round nest	Primary Diet: carnivore (piscivore, insectivore, eats non-insect arthropods, planktivore); Animal Foods: amphibians, fish, insects, aquatic crustaceans, zooplankton; Plant Foods: phytoplankton	Small mouth bass	Flowing water medial carnivore fish
Black redhors e	Moxost oma duques nii	Moderately sized rivers and streams, 25 to 130 m wide, up to 1.8 m in depth, and with generally moderate to fast currents.		Benthic-feeder; Primary Diet: omnivore; (insectivore), herbivore (algivore); Animal Foods:aquatic insects; Plant Foods: microcrustaceans, and alga; Other Foods: detritus	Black redhors e	Flowing water medial omnivore fish
River redhors e	Moxost oma carinat um	Found in only the largest rivers of the Ohio and Lake Erie drainage systems. They are typically found in deep pools with moderate current over bedrock or gravel substrate. River redhorse are	Migrate into smaller streams and spawn at night at the top and bottom ends of shallow riffles.	Benthic-feeder; Primary Diet: carnivore; Animal Foods:mussels, snails, crustaceans and immature aquatic insects.	River redhors e	Flowing water medial carnivore fish

			intolerant of pollution and turbid (murky) water and are an indicator of good water quality. They feed on larval insects, small mollusks, snails, and other aquatic invertebrates.				
	Paddlef	Paddlef ish	Brackish freshwater; large rivers with deep water (greater than 6 meters) and slow moving currents (less than 5 cm/s).	Areas with sand or gravel bars	Primary Diet: planktivore (herbivore); Animal Foods: insects, aquatic crustaceans, zooplankton Foraging Behavior: filter-feeding	Paddlef ish	Flowing water large omnivore fish
Repti le and amph ibian	Copper -bellied water snake	Nerodi a erythro gaster	Semi-aquatic, using both terrestrial and freshwater aquatic habitats. Aquatic habitats include ephemeral ponds or temporary pools, permanent lakes and ponds, swamps, bogs, marshes, small rivers, and riverine sloughs. Terrestrial habitats used as travel corridors, aestivation sites, hibernation sites and occasional feeding sites, including forests, grasslands, and scrublands. Sometimes in agricultural land.	Flooded forest wetlands with less than 15 cm of standing water, ponds near the shoreline. Woody debris was observed near the breeding site.	Primary Diet: carnivore (eats terrestrial vertebrates, piscivore); Animal Foods: amphibians, fish, carrion, aquatic crustaceans	Copper -bellied water snake	Semi- aquatic snake
Muss el	Mussel		Freshwater like lakes, ponds, rivers,		Filter feeders; feed on plankton and	Mussel	Mussels

			creeks, canals. Some live in water; some live on exposed shores in the intertidal zone, attached by means of their strong byssal threads to a firm substrate.	other microscopic water creatures which are free- floating in water		
Shri mp	Palaem onetes shrimp	Palaem onetes paludos us	Habitat Regions: temperate freshwater Aquatic Biomes: lakes and ponds, rivers and streams, brackish water	Filter-feeding; Primary Diet: carnivore (insectivore), herbivore (algivore); Animal Foods: insects, zooplankton; Plant Foods: algae, phytoplankton; Other Foods: detritus	Palaem onetes shrimp	Shrimp

*These descriptions are mainly from original website with light edition. Only for appendix backup, cannot directly use since copyright. (The data sources are "ADW" <u>http://animaldiversity.org/</u> and "natureserve" <u>http://explorer.natureserve.org/</u>).

**Species Types are from LCC Conservation Practices Factsheets

Appendix 3.3 Species and Corresponding Functional Groups for Focal Habitat

Habitat	Species Groups	Functional groups
Big Rivers	Paddlefish	Flowing water large fish
	Sturgeon	Flowing water large fish
	Mussels	Mussel
Mudflat/moist soil/bottomland & hydric agriculture	Short-billed dowitcher	Shorebird
	Lesser yellowleg	Shorebird
	Yellowleg	Shorebird

	Pectoral sandpiper,	Shorebird		
	Whooping cranes	Migratory waterfowl		
	Duck species (TBA)	Migratory waterfowl		
	pintails	Migratory waterfowl		
	American golden plover	Upland bird		
	Interior least tern (FE)	Shorebird		
Upland agricultural fields	Bobwhite quail	Upland bird		
	Pollinators	Pollinator		
	America golden plover	Upland bird		
Grasslands	Henslow's sparrow	Upland bird		
	Grasshopper sparrow	Upland bird		
	Pollinators	Pollinator		
	Meadowlark	Upland bird		
	Barn owl	Upland bird: owls and hawks		
	Short-eared owls	Upland bird: owls and hawks		
	Northern harriers	Upland bird: owls and hawks		
	Bobwhite quail	Upland bird		
	Crawfish frog	Reptiles and amphibians		
Tributaries /	Hellbenders	Reptiles and		

Streams		amphibians
	Mussels	Mussel
	Invertebrates	Invertebrate
Bottomland hardwood forests	Indiana bat	Bat
	Wood duck	Migratory waterfowl
	Prothonotary warblers	Upland bird
	Red-shouldered hawk	Upland bird: owls and hawks

*From LCC Lower Wabash draft plan

Appendix 4. Table of Land Use Data

Appendix 4. Table of land use data to be used for future GIS analysis, to determine where practices can be utilized (NRCS CPPE tool).

Conservation Practices	Land uses									
	C r p	F o r e st	R a g e	P a st u r e	P r t e ct e d	F a r m st e a d	D e v el o p e d L a n d	W a t e r	O t e r	Associated Ag. Land
Drainage Water Management	х			Х		х			х	Х
Contour Buffer Strips	х									
Prescribed Burning	х	х	х	Х	х				х	х
Cover Crop	х	х	х	Х	х				Х	х
Dam, Diversion	х	Х	х	Х	х	х	х	х	х	х
Two-stage Ditches	х	Х	Х	Х	х	х	х	х	Х	Х
Wetland Restoration	Х	Х	Х	Х	Х			Х	Х	Х

Appendix 5. Other Available Data

Appendix 5. Other available data which will be useful to stakeholders, in Lower Wabash cooperative.

Water data for the Lower Wabash River basin is available from several sources. The Indiana Department of Environmental Management (IDEM) has macroinvertebrate data for the Lower Wabash River watershed from years 1993, 1996, 1997, and 2009 (McMurray, 2016). Fish community and habitat data is also available through IDEM for years 1999, 2004, 2009, and 2016 (Gaston, 2016). The Ohio River Valley Sanitation Commission (ORSANCO) collects

stream data from a monitoring station downstream of New Harmony, Indiana; this monitoring station has collected samples since 1988. ORSANCO also provides datasonde, algae, and nutrient data from their Wabash River Project, which was conducted in 2011 and reauthorized in 2012 (ORSANCO, 2016). A USGS gage station located on the Wabash River at Mt. Carmel, IL provides flow volumes representative of 86.5% of the Wabash River watershed (ORSANCO, 2012).